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EXECUTIVE SUMMARY 
 

 

Nowadays anonymous vehicle probe data have been greatly improved in both data coverage and 

data fidelity.  Thus, vehicle probe data have become a reliable source for freeway travel time 

analysis. Travel time prediction plays a significant role in traffic data analysis and applications as 

it can assist in route planning and reducing traffic congestion. With the development of artificial 

intelligence technologies, various novel prediction methods have been developed accordingly in 

recent years. Machine learning is an example of a data driven method which aims to increase 

efficiency and accuracy of predictions. Recently, different machine learning-based approaches, 

such as neural network, ensemble learning, and support vector machines, have been employed by 

the researchers and the results indicate that such approaches for prediction are adaptable and can 

give better performances than traditional models. 

 

In this study, an advanced machine learning-based approach (i.e. XGBoost model) is employed 

to predict the freeway travel time. Detailed information about the input variables and data pre-

processing is presented. Parameters of the XGBoost model are introduced and the parameter 

tuning process is also discussed. The relative importance of each variable in the model is 

presented and interpreted. Optimized modeling results of the proposed XGBoost travel time 

prediction model are evaluated and compared with those of the gradient boosting model. The 

results also demonstrate that the developed XGBoost travel time prediction model significantly 

improves the computation accuracy and efficiency. Summary and conclusions of the whole study 

are made and further research directions are given at the end of study. 
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Chapter 1.  Introduction 

1.1 Problem Statement 

Nowadays anonymous vehicle probe data have been greatly improved in both data 

coverage and data fidelity, and thus have become a reliable source for freeway travel time 

analysis. Travel time prediction plays a significant role in traffic data analysis and applications as 

it can greatly help in route planning and reducing traffic congestion. Traditionally, methods such 

as linear regression and time series models have been widely applied to predict travel times using 

historical data. However, with the consideration of effectiveness, accuracy, and feasibility, these 

models may become outdated and replaceable. With the development of artificial intelligence 

technologies, various novel prediction methods have been developed accordingly in recent years. 

Machine learning is an example of a data driven method which aims to increase efficiency and 

accuracy of the prediction. Recently, different machine learning-based approaches, such as 

neural network, ensemble learning, and support vector machines (SVM), have been employed by 

the researchers and the results indicate that such approaches for prediction are adaptable and can 

give better performances than traditional models. Therefore, the machine learning-based 

approach is selected for the travel time prediction in this study. 

1.2 Motivation of Study 

The purpose of this project is to develop a systematic approach to predicting freeway 

travel time. An advanced machine learning-based approach (i.e. XGBoost model) is employed to 

predict the freeway travel time. The prediction methodology can assist the decision makers in 

planning, designing, operating, and managing a more efficient highway system.  

1.3 Objectives of Study 

Specific objectives are to: 1) Develop the travel time prediction model using an 

advanced, efficient and accurate machine learning-based approach, 2) Select a real-world 

freeway corridor to examine the developed prediction model, and 3) Evaluate the prediction 

results of the developed model. 

1.4 Report Overview 

The report will be structured as shown in Figure 1.1. In this chapter, the significance and 

motivation of the study on travel time prediction have been discussed, followed by the 

description of study objectives. 

Chapter 2 presents a comprehensive review of the current state-of-the-art and state-of-

the-practice travel time prediction methodologies. In detail, several machine learning-based 

methods used by the reviewed studies including the neural network approach, ensemble learning 

approach, K-nearest neighbor (K-NN) approach, and support vector machine approach, will be 

presented.  

Chapter 3 describes the basic information needed to predict travel time, including the 

travel time data and historical weather data utilized in this study. Detailed information about the 
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raw travel time data source is described first, followed by the discussions about weather data 

collection. 

Chapter 4 presents the travel time prediction methodology which is utilized in this study. 

The idea of ensemble learning is introduced first. Detailed information on the decision tree 

algorithm, bagging algorithm, and boosting algorithm is presented. The basic information about 

the Random Forest and gradient boosting models is described including advantages and 

disadvantages. An introduction of the XGBoost model is also presented in this chapter. 

Advantages of the XGBoost model are listed. The detailed process of the XGBoost model is 

described including the objective function, regularization terms, and model score. 

Chapter 5 discusses the validation steps of the proposed XGBoost-based travel time 

prediction model based on the data described in Chapter 3. Selected features include, but are not 

limited to, the following: time of day (TOD), day of week (DOW), month of year, year, weather 

conditions, segment characteristics, etc. Detailed information about the input variables and data 

pre-processing is presented. The parameters of the XGBoost model are introduced and the 

parameter tuning process is also discussed. The experiment results could give a clear picture of 

how the analyzed parameters impact the prediction performance. 

Chapter 6 presents the interpretation and evaluation of the numerical results of the 

developed XGBoost model. The relative importance of each variable in the model is presented 

and interpreted. In order to examine the accuracy and effectiveness of the proposed model, this 

chapter also evaluates the optimized modeling results of the proposed XGBoost travel time 

prediction model and compares them with those of the gradient boosting model. The results also 

demonstrate that the developed XGBoost travel time prediction model significantly improves the 

computational accuracy and efficiency. 

Chapter 7 concludes the study with a summary of the discussions about the developed 

travel time prediction model and the modeling results. Suggestions for future research are also 

provided. 
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Figure 1.1: Research Structure 
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Chapter 2.  Literature Review 

2.1 Introduction 

This chapter provides a comprehensive review of machine learning-based travel time 

prediction studies. This should give a clear picture of existing efforts toward the travel time 

prediction. 

The following sections are organized as follows. Section 2.2 gives a comprehensive 

review of existing machine learning-based travel time prediction studies. Section 2.3 concludes 

this chapter with a summary. 

2.2 Travel Time Prediction Using Machine Learning Approaches 

Traditionally, methods such as linear regression and time series models have been widely 

applied to predict travel times using historical data. However, with the consideration of 

effectiveness, accuracy and feasibility, these models may become outdated and replaceable. With 

the development of artificial intelligence technologies, various novel prediction methods have 

been developed accordingly in recent years. With the help of intelligent transportation systems 

(ITS) and the traffic data, different machine learning approaches have been deployed in the 

travel time prediction area. The methodology can include, but are not limited to: Support vector 

machine regression, Neural network approaches (e.g., State-and-space neural network, long 

short-term memory neural network), nearest neighbor (e.g., k-nearest neighbor), and ensemble 

learning (e.g., Random Forest and gradient boosting), etc. The review of different approaches 

will be helpful to find the most appropriate, advanced and accurate model in this study.  

Research studies that used machine learning/deep learning methods to predict travel time are 

reviewed and summarized in this section. Table 2.1 provides a summary of the studies reviewed 

in this section in chronological order. 

2.2.1 Support Vector Machine (SVM) Approach 

 2.3.1.1 Wu et al.’s research work 

Wu et al. (2004) applied SVM for travel-time prediction and compared its results to other 

baseline travel time prediction methods using real world highway traffic data. Since 

support vector machines have greater generalization ability and can guarantee global 

minima for given training data, it was believed that SVM would perform well for time 

series analysis. The results showed that the SVM predictor can significantly reduce both 

relative mean errors and root-mean-squared errors of predicted travel times. This study 

demonstrated the feasibility of applying SVM in travel time prediction and proved that 

SVM is applicable for traffic data analysis. 

2.2.2 Neural Network Approach 

 2.3.2.1 Park and Rilett’s research work 

Park and Rilett (1999) proposed a BP neural network model to predict freeway link travel 

time. The freeway link travel time data collected on the freeways of Houston, Texas, by 

the automatic vehicle identification (AVI) system were used as the validation database. 
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The proposed model can provide acceptable prediction results with the mean absolute 

percentage error (MAPE) being ranged from 7.4% to 18%. 

 2.3.2.2 Van Lint et al.’s research work 

Van lint et al. (2002) presented an approach to predicting freeway travel time based on 

the state-space neural network. The data from freeway operations simulation (FOSIM) 

4.1 were used to train and test the travel time prediction model. The authors also 

eliminated the insignificant parameters in the model and made it more effective without 

the loss of predictive performance. 

 2.3.2.3 Wisitpongphan et al.’s research work 

Wisitpongphan et al. (2012) proposed a back propagation (BP) neural network model to 

predict freeway link travel time. The one-month vehicle trajectory data of 297 probe 

vehicles via GPS database in Thailand were used as the validation database. The 

prediction results of the proposed model can accurately approximate the travel time with 

the mean squared error (MSE) being less than 3%. 

 2.3.2.4 Zheng and Van Zuylen’s research work 

Zheng and Van Zuylen (2013) conducted a study using the probe vehicle data to estimate 

complete link travel times. Based on the information collected by probe vehicles, a three-

layer neural network model was developed by the authors to estimate complete link travel 

time for individual probe vehicle traversing the link. The estimation result of this model 

was then compared with that of an analytical estimation model. The performance of these 

two models were evaluated using the data derived from VISSIM simulation model. The 

final results suggested that the Artificial Neural Network model performs better. 

 2.3.2.5 Duan et al.’s research work 

Duan et al. (2016) employed a long short-term memory (LSTM) neural network model to 

predict freeway travel time. The authors constructed 66 series LSTM neural networks by 

using travel time data collected along 66 links of the highways in England. The authors 

discussed the predictions of multi-step ahead travel time and found 1-step ahead travel 

time prediction can provide best results. 

 2.3.2.6 Liu et al.’s research work 

Liu et al. (2017) proposed a LSTM deep neural network model using 16 settings of 

hyper-parameters to predict the travel time on the interstate highways in California, U.S. 

The results of proposed model were compared with the results of other regression models 

and Autoregressive integrated moving average (ARIMA) model and showed that the 

performance of the LSTM neural network model was the best. 

 2.3.2.7 Wang et al.’s research work 

Wang et al. (2018) presented a novel machine learning method to predict the vehicle 

travel time based on floating-car data. The authors adapted different machine learning 

models to solve the regression problem. Furthermore, the authors evaluated the solution 

offline with millions of historical vehicle travel data and the results showed that their 
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proposed deep learning algorithm significantly outperforms the other state-of-the-art 

algorithms. 

 2.3.2.8 Wang et al.’s research work 

Wang et al. (2018) proposed a LSTM neural network-based travel time prediction model 

using the historical vehicle trajectory data. Both road segment-based travel time 

estimation and path-based travel time estimation were discussed in this study. The results 

showed that the proposed model can effectively capture the spatial and temporal 

dependencies and accurately predict travel time. 

 2.3.2.9 Wei et al.’s research work 

Wei et al. (2018) combined the convolutional neural network and LSTM neural network 

together to predict the short-term travel time. The vehicle trajectory data on the urban 

roads were used in this study. The author pointed out that the prediction of the proposed 

model was more effective than that of other existing approaches. 

2.2.3 Nearest Neighbors Approach 

 2.3.3.1 Yu et al.’s research work 

Yu et al. (2017) combined the Random Forest model and K-NN model in their study to 

predict bus travel time. The proposed combined-model was compared with linear 

regression, K-NN, SVM and Random Forest. The results showed the proposed model 

achieved highest accuracy level and can be applied to real-time prediction.  

 2.3.3.2 Myung et al.’s research work 

Myung et al. (2011) proposed a model to predict travel times on the basis of the k nearest 

neighbor (KNN) method using data provided by the vehicle detector system and the 

automatic toll collection system. By combining these two sets of data, the model 

minimized the limitations of each dataset and enhanced the prediction’s accuracy. The 

authors compared the prediction results of the proposed model with the predictions of 

other models by using actual data. The comparison results showed that the proposed 

model predicts travel times much more accurately.  

 2.3.3.3 Moonam et al.’s research work 

Moonam et al. (2019) conducted a study to predict the expected travel time based on the 

experienced travel time using the data mining techniques such as k-nearest neighbor (k-

NN), least squares regression boosting and Kalman filter (KF) methods. The authors 

compared the performances of each methods from both link and corridor perspectives and 

concluded that the KF method offers superior prediction accuracy in a link-based model. 
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2.2.4 Ensemble Learning Approach 

 2.3.4.1 Hamner et al.’s research work 

Hamner et al. (2011) applied a context-dependent Random Forest method to predict 

travel-time based on GPS data of the cars on the road in a simulation framework. The 

root mean squared error (RMSE) of the model was less than 7.5%.  

 2.3.4.2 Zhang and Haghani’s research work 

Zhang and Haghani (2015) employed a gradient boosting regression tree method to 

analyze and predict freeway travel time to improve the prediction accuracy. The authors 

used travel time data along freeway sections in Maryland and discussed the effects of 

different parameters on the proposed model and the correlations of input and output 

variables. The prediction results showed the proposed model can provide considerable 

advantages in freeway travel time prediction. 

 2.3.4.3 Li and Bai’s research work 

Li and Bai (2016) employed a gradient boosting regression tree method to analyze and 

predict travel time of freight vehicles. The authors used travel time data and vehicle 

trajectory data in Ningbo, China. The prediction results showed the proposed model can 

be feasible in the real-world. 

 2.3.4.4 Fan et al.’s research work 

Fan et al. (2017) conducted a study using the Random Forest method to predict highway 

travel time based on data collected from highway electronic toll collection in Taiwan. 

The results can help highway drivers to select optimal departure times to avoid traffic 

congestion and thus minimize travel time. 

 2.3.4.5 Gupta et al.’s research work 

Gupta et al. (2018) employed Random Forest and gradient boosting models to predict taxi 

travel time in Porto, Portugal. The vehicle trajectory data were used as the database and it 

was found that the gradient boosting model provided better prediction results than the 

Random Forest model.
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Table 2.1: Summary of Travel Time Prediction Using Machine Learning Approaches 

Year Author Location 
Roadway 

Category 
Data Source 

Data 

Type 
Prediction method 

1999 Park and Rilett Houston, US Highway AVI system Travel time BP Neural Network 

2002 Van Lint et al. N/A Freeway 
FOSIM (freeway 

operations simulation) 
Travel time, travel speed State-Space Neural Network 

2005 Wu et al. Taiwan Highway Loop detector Travel speed SVM 

2010 Hamner et al. N/A N/A 
Global Positioning 

System (GPS) 
Travel speed Random Forest 

2011 Myung et al. Korea N/A 
Automatic traffic count 

system 
Travel time K-NN 

2012 Wisitpongphan Bangkok, Thailand Highway GPS Travel time, GPS BP Neural Network 

2013 
Zheng and Van 

Zuylen 
Delft, Netherlands Urban road GPS data Vehicle position, travel speed State-Space Neural Network 

2015 
Zhang and 

Haghani 
Maryland, US Interstate highway INRIX Company Travel time Gradient boosting 

2016 Duan et al. England Highway 
Cameras, GPS and loop 

detectors 
Travel time LSTM Neural Network 

2016 Li and Bai Ningbo, China N/A N/A 
Truck trajectory, travel time, 

travel speed 
Gradient boosting 

2017 Liu et al. California, US Interstate highway 

Freeway performance 

measurement system 

(PeMS) 

Travel time LSTM Neural Network 

2017 Fan et al. Taiwan Highway Electric toll 
Travel time, vehicle 

information 
Random Forest  

2017 Yu et al. Shenyang, China Bus route 
Automatic Vehicle 

Location system 
Bus travel time Random Forest and K-NN 

2018 Wang et al. Beijing, China Urban road Floating car data 
Taxi ravel time, vehicle 

trajectory data 
LSTM Neural Network 

2018 Wei et al. China Urban road 
Vehicle passage 

records  
Travel time LSTM Neural Network 

2018 Wang et al. 
Beijing and 

Chengdu, China 
Urban road GPS Vehicle trajectory data LSTM Neural Network 

2018 Gupta et al. Porto, Portugal Urban road GPS Taxi travel speed 
Random forest and gradient 

boosting 

2019 Moonam et al. 
Madison, 

Wisconsin, US 
Freeway Bluetooth detector Travel speed K-NN, KF 
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2.3 Summary 

A comprehensive review and synthesis of the current and historical researches related to 

travel time prediction have been discussed and presented in the preceding sections. This is 

intended to provide a solid reference and assistance in developing travel time prediction models. 
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Chapter 3.  Data Collection and Processing 

3.1 Introduction 

This chapter provides the basic information needed to conduct travel time prediction, 

including the travel time data and historical weather data utilized in this study. The following 

sections are organized as follows. Section 3.2 presents detailed information about the raw travel 

time data source, followed by the discussions about weather data collection in section 3.3. 

Section 3.4 describes details of data processing. Finally, section 3.5 concludes this chapter with a 

summary. 

 

3.2 Travel Time Data Collection 

This study focuses on the travel time data gathered from the Regional Integrated 

Transportation Information System (RITIS) website and uses the collected data to conduct the 

TTR analysis and travel time prediction. A series of major freeway segments are selected for the 

case study: Interstate 77 (I-77) Southbound (Figure 3.1) is one of the most heavily traveled 

Interstate highways in Charlotte, North Carolina and runs from north to south. All the selected 

segments have uninterrupted coverage of RITIS data 24 hours per day and 365 days a year. 

The selected section of I-77 Southbound starts from the intersection with US-21 (Exit 16) 

and ends at the interchange with Nations Ford Road (Exit 4) at the south part of the city. 26 

roadway segments are selected in this study, and the total length of the selected section is 15 

miles. 

  
Figure 3.1: Selected I-77 Southbound Section 
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The raw probe data can be downloaded with the desired section and format on the RITIS 

website probe data analytic suite. The roadway section can be selected based on the road 

location, traffic message channel (TMC), directions, zip codes, etc. The date range can be 

selected from January 1
st
, 2008 to today. Seven days of week and times of day from 12:00 AM to 

11:59 PM can also be selected. The averaging period can be selected as five minutes, ten 

minutes, fifteen minutes and one hour. A sample of raw travel time data utilized in this study is 

shown in Table 3.1 below: 

Table 3.1: Sample Raw Travel Time Data 

Timestamp TMC code Travel time (s) 

1/1/2015 0:00 125-04785 5.16 

1/1/2015 0:00 125-04782 35.68 

1/1/2015 0:00 125-04783 33.22 

1/1/2015 0:00 125N04789 54.5 

1/1/2015 0:00 125N04787 53.76 

1/1/2015 0:00 125N04788 29.6 

1/1/2015 0:00 125N04781 12.42 

1/1/2015 0:00 125N04782 21.73 

1/1/2015 0:00 125N04780 14.59 

1/1/2015 0:00 125N04785 11.85 

1/1/2015 0:00 125N04786 47.56 

1/1/2015 0:00 125N04783 12.82 

1/1/2015 0:00 125N04784 53.58 

 

Table 3.1 contains the following information: 

TMC Code: The RITIS Probe Data Analytics Suite uses the TMC standard to uniquely 

identify each road segment. This column indicates the segment ID. 

Timestamp: This column indicates the timestamp of the record. 

Travel time: This column indicates the time it will take to drive along the roadway 

segment. 

 

3.3 Weather Data Collection 

The historical weather data near the Charlotte Douglas International airport can be found 

at the www.wunderground.com website. The raw weather data from this website were recorded 

per hour. Due to the discrepancy in the time interval, one-to-one mapping or correlation study 

cannot be done using the original data. Hence, the methodology to combine the traffic data with 

the weather data will be discussed in the next section. The sample of weather data achieved is 

shown in Table 3.2 below. 

http://www.wunderground.com/
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Table 3.2: Sample Raw Weather Data 

Date Time (EDT) Conditions 

Saturday, March 14, 2015 6:55 AM Rain 

Saturday, March 14, 2015 7:55 AM Rain 

Saturday, March 14, 2015 8:55 AM Light Rain 

Saturday, March 14, 2015 9:55 AM Light Rain 

Saturday, March 14, 2015 10:55 AM Light Rain 

Saturday, March 14, 2015 11:55 AM Light Rain 

Saturday, March 14, 2015 12:55 PM Light Rain 

Saturday, March 14, 2015 1:55 PM Light Rain 

Saturday, March 14, 2015 2:55 PM Light Rain 

Saturday, March 14, 2015 3:55 PM Light Rain 

Saturday, March 14, 2015 4:55 PM Rain 

 

3.4 Data Processing 

Due to the weather characteristics in the Charlotte area and the distribution of each 

weather category, detailed weather conditions are categorized into three groups including 

normal, rain, and snow/fog/ice. Table 3.3 presents the detailed classification of the weather 

conditions. Conditions such as “overcast” or “mostly cloudy” are assumed to be no different 

from “clear” conditions due to no obvious impact on traffic conditions. These conditions are 

categorized into ‘normal’. All the conditions such as ‘rain’ or ‘thunderstorm’ are categorized as 

‘rain’. In order to ensure the acceptable sample size, “snow”, “fog”, “ice pellet”, and other 

similar conditions are combined together due to their rate of occurrence. The RITIS datasets are 

aggregated into 15- minutes intervals, while the weather dataset is aggregated into one-hour 

intervals. Therefore, the weather conditions are distributed evenly with RITIS dataset based on 

the timestamp. 

 

 
Table 3.3: Classification of the Weather Conditions 

New Weather Category Original Weather Condition 

Snow/fog/ice Haze 

Fog 

Smoke 

Patches of Fog 
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New Weather Category Original Weather Condition 

Mist 

Shallow Fog 

Light Freezing R 

Light Ice Pellet 

Light Freezing D 

Light Freezing F 

Ice Pellets 

Light Snow 

Snow 

Heavy Snow 

Normal Clear 

Partly Cloudy 

Mostly Cloudy 

Scattered Clouds 

Overcast 

Unknown 

Rain Light Rain 

Rain 

Heavy Rain 

Light Drizzle 

Heavy Thunderstorm 

Light Thunderstorm 

Thunderstorm 

Drizzle 

Squalls 

 

 

 

3.5 Summary 

This chapter presents the detailed information on the data source, data structure, and 

processing methodology to combine the travel time with raw weather data. This is intended to 

provide a solid reference and assistance in predicting travel time for future tasks.  
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Chapter 4.  Travel Time Prediction Methodology 

4.1 Introduction 

This chapter presents the introduction to the travel time prediction methodology. The 

following sections are organized as follows. Section 4.2 shows the basic information about the 

ensemble learning methodology, which includes the ideas of bagging algorithm and boosting 

algorithm. Section 4.3 discusses the principles of the XGBoost algorithm. Finally, section 4.4 

concludes this chapter with a summary. 

 

4.2 Basic Information on the Ensemble Learning Methodology 

 

The ensemble learning-based algorithms consist of multiple base models (e.g., decision 

tree model), and each base model provides an alternative solution to the problem. The prediction 

results of these base models are combined by some rules (such as weighted or unweighted voting 

and averaging). The final output will be achieved through the combined model.  

The base model of the ensemble learning algorithm is extremely important to the final 

results. Since the model is expected to have enough degrees of freedom to solve the underlying 

complexity of the data and avoid high variance and be more robust at the same time, the two 

most fundamental characteristics of the base model should be a low bias and a low variance. In 

other words, the base model should be a ‘weak learner’ and needs to be converted to a ‘strong 

learner’. In machine learning area, a ‘weak learner’ means a model that performs slightly better 

than random guessing.  

Decision tree is a basic data-driven supervised learning method and has been widely used 

in the data mining area (Quinlan, 1986; Han and Kamber, 2011). A single decision tree is 

constructed by splitting the features’ space into regions. The target variable can be predicted by 

using the values of a set of features.  

In detail, the pseudo-code for decision tree is shown below in Figure 4.1, which can make 

it easier to understand the idea of decision tree algorithm. 
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Figure 4.1: Pseudo-code for Decision Tree  

Source: Quinlan (1986) 

Tree model is one type of the base models that are commonly used for ensemble learning. 

Tree model can be very sensitive, even small perturbations in the training data can lead to very 

different trees. This unique property makes the tree model a good candidate for ensemble 

learning. In addition, the computation process of tree model is fast and easy, which can reduce 

model complexity and improve the efficiency.  

Overfitting means that a function fits the data too well. Typically, this is because the 

actual equation is too complicated to consider each data point and outlier. The tree-based 

ensemble method can build a large number of different trees and then combine the results from 

each individual tree. The benefit of using an ensemble tree is that through averaging, the 

variance can be reduced. 

The purpose of an ensemble learning algorithm is to achieve an improved result by 

combining predictions of a group of individual base models. It has been shown that the combined 

model often generates more stable and accurate predictions in many applications (Leblanc and 

Tibshirani, 1996; Banfield et al., 2006). 

Bagging and boosting are both ensemble techniques, where a set of base models are 

combined to create a model that obtains better performance than a single model. However, they 

utilize different re-sampling methods and therefore can have different performances and generate 

different outputs.  

4.2.1 Bagging Algorithm 

Bagging is a method for generating multiple versions of predictor and using these to get an 

aggregated predictor (Breiman, 1996). The bagging algorithm could help reduce the 

overfitting problem from a single model. 

Typically, there are 3 steps to use the tree-based bagging algorithm: The first step is to create 

several (e.g., 100) random sub-samples of the dataset with replacement. The second step is to 

train a model using each sample. Finally, given a new dataset, calculate the average 

prediction from each model (Breiman, 1996). 
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In detail, the pseudo-code for bagging introduced by Breiman (1996) is shown in Figure 4.2, 

which can make it easier to understand the idea of bagging algorithm. Given a training set D, 

in each iteration (ranging from 1 to T), randomly sample with replacement N samples from 

the training dataset. Then train a selected base model A (e.g., decision tree model) on 

samples. For each test example, start with all trained base models, and then predict by 

combining results of all T trained models. For the regression problem, the combining rule 

will be averaging them; for the classification problem, the combining rule will be a majority 

vote. 

 

Figure 4.2: Pseudo-code for Bagging  

Source: Breiman (1996) 

 

Random Forest is a typical bagging-based model that was introduced by Breiman (2001), and 

it has been widely used in the machine learning area. Random Forest is a combination of 

many decision trees. There are two types of randomness built into the trees. First, each tree is 

built on a random sample from the training dataset. Second, a subset of features are randomly 

allocated to each tree node to generate the best split. 

The main limitation of the Random Forest is that a larger number of trees may make the 

model run slower. If the data include categorical variables with a different number of levels, 

“Random Forests are biased in favor of those variables with more levels” (Strickland, 2007). 

4.2.2 Boosting Algorithm 

 

The idea of boosting algorithm was first proposed by Kearns (1988). Boosting algorithm also 

refers to several algorithms that convert weak learners to strong learners. Several base 

models are combined together to form stronger model that can make generalizations 

(Rajsingh et al., 2018).  

Different from the bagging method which has each base model run independently and then 

aggregates their outputs at the end without any preference, the boosting method improves the 
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prediction through developing multiple models in sequence by putting emphasis on these 

training cases that are difficult to estimate.  

In detail, the initial model in boosting is predicted using a loss function. Each time a decision 

tree is generated, the model is updated based on the previous model and loss function 

resulting in a final model. The samples have an unequal probability of appearing in 

subsequent models and ones with the highest error appear most, which means that the 

incorrectly estimated or misclassified samples have more chances to be selected.  

There are many boosting algorithms such as AdaBoost, Gradient boosting, and XGBoost. 

Gradient boosting is a typical boosting approach, and it has been widely used in the machine 

learning area. The word ‘gradient’ means that it uses a gradient descent algorithm to 

minimize the loss when adding new models (Friedman, 2001). The gradient boosting 

approach supports both classification and regression predictive modeling problems. 

Based on previous studies, the gradient boosting model generally gives better results than 

Random Forest, since Random Forest has fewer parameters needing tuning and also is less 

sensitive to these parameters (Ogutu et al., 2011; Freeman et al., 2015). However, the 

gradient boosting model is harder to fit than Random Forests at the same time. The stopping 

criteria should also be chosen carefully to avoid overfitting on the training data. 

4.3 XGBoost Algorithm 

XGBoost is the short name for ‘Extreme gradient boosting’ that was proposed by Chen 

and Guestrin (2016). In recent years, it has a recognized impact in solving machine learning 

challenges in different application domains.  

The speed of XGBoost is much faster than that of other common machine learning 

methods since it can process large amounts of data in a parallel way efficiently. The XGBoost 

model can also handle missing values in the dataset. Above all, “XGBoost used a more 

regularized model formalization to control over-fitting, which gives it better performance” (Chen 

and Guestrin, 2016). Therefore, the XGBoost model is selected and used to conduct travel time 

prediction in this study. The detailed information about the XGBoost model is described as 

follows:  

The objective function (Obj(Θ)) of the XGBoost model is provided below (Chen and 

Guestrin, 2016):  

𝑂𝑏𝑗(Θ) = 𝐿(Θ) + Ω(Θ) 

where,  

𝐿(Θ) = The training loss, which measures how well the model fit on training data 

Ω(Θ) = The regularization term, which measures the complexity of the model. 

The loss on training data can be expressed as:  
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𝐿 = ∑ 𝑙(𝑦𝑖, �̂�𝑖)
𝑛

𝑖=1
 

In detail, the square loss for the regression problem can be expressed as:  

𝑙(𝑦𝑖, �̂�𝑖) = (𝑦𝑖 − �̂�𝑖)
2 

The logistic loss for the classification problem can be expressed as: 

𝑙(𝑦𝑖, �̂�𝑖) = 𝑦𝑖 ln(1 + 𝑒−�̂�𝑖) + (1 − 𝑦𝑖)𝑙𝑛(1 + 𝑒�̂�𝑖) 

In this study, 

�̂�𝑖 = the predicted travel time. 

𝑦𝑖 = the actual travel time. 

When a new tree is added to the model, the objective function can be transformed to: 

𝑂𝑏𝑗(t) = ∑ 𝑙(𝑦𝑖, �̂�𝑖
(𝑡)

)
𝑛

𝑖=1
+ ∑ Ω(𝑓𝑖)

𝑡

𝑖=1
= ∑ 𝑙(𝑦𝑖, �̂�𝑖

(𝑡−1)
+ 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑛

𝑖=1
 

In order to get the simplest goal, the constant term should be removed from the function. 

The process of XGBoost uses second order Taylor expansion to extend the loss function and 

removes the constant term (Chen and Guestrin, 2016). 

𝑂𝑏𝑗(t) = ∑ 𝑙 (𝑦𝑖, �̂�𝑖
(𝑡−1)

+ 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)) + Ω(𝑓𝑡)
𝑛

𝑖=1
 

where, 

𝑔𝑖 = 𝜕
�̂�𝑖

(𝑡−1)𝑙(𝑦𝑖 , �̂�𝑖
(𝑡−1)

) , which means the first order partial derivative of the function 

ℎ𝑖 = 𝜕
�̂�𝑖

(𝑡−1)
2 𝑙(𝑦𝑖, �̂�𝑖

(𝑡−1)
) , which means the second order partial derivative of the 

function 

After the removal of all the constants, the specific objective at step 𝑡 becomes: 

𝑂𝑏𝑗(t) = ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + Ω(𝑓𝑡)
𝑛

𝑖=1
 

 

In the XGBoost model, the complexity is defined as (Chen and Guestrin, 2016): 
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Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2

𝑇

𝑗=1

 

where, 

T = the number of leaf nodes 

𝛾 = the penalty coefficient of the number of leaves 

𝜆 = the penalty coefficient of regularization 

𝑤𝑗= the score of leaf 𝑗 

After re-formulating the tree model, the objective function with the t-th tree can be 

written as: 

𝑂𝑏𝑗(t) = ∑ [𝑔𝑖𝑤𝑞(𝑥𝑖) +
1

2
ℎ𝑖𝑤𝑞(𝑥𝑖)

2 ] + 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2

𝑇

𝑗=1

𝑛

𝑖=1
 

𝑂𝑏𝑗(t) = ∑ [(∑ 𝑔𝑖)𝑤𝑗

𝑖∈𝐼𝑗

+
1

2
(∑ ℎ𝑖 + 𝜆)𝑤𝑗

2] +

𝑖∈𝐼𝑗

𝑇

𝑗=1
𝛾𝑇 

where 𝐼𝑗 = {𝑖|𝑞(𝑥𝑖) = 𝑗} is an instance set assigned to the j-th leaf. The objective 

function could be further compressed as: 

𝑂𝑏𝑗(t) = ∑ [𝐺𝑗𝑤𝑗 +
1

2
(𝐻𝑗 + 𝜆)𝑤𝑗

2] +
𝑇

𝑗=1
𝛾𝑇 

where 𝐺𝑗 = ∑ 𝑔𝑖𝑖∈𝐼𝑗
, 𝐻𝑗 = ∑ ℎ𝑖𝑖∈𝐼𝑗

 

The best 𝑤𝑗 one can get for the objective function is: 

𝑤𝑗
∗ = −

𝐺𝑗

𝐻𝑗 + 𝜆
 

Therefore, the final objective function can be written as: 

𝑂𝑏𝑗(t) = −
1

2
∑

𝐺𝑗
2

𝐻𝑗 + 𝜆
+

𝑇

𝑗=1
𝛾𝑇 

The smaller the score is, the better the structure is. 

XGBoost can also add branches for each leaf node. The loss reduction after the split can 

be expressed as: 
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𝐺𝑎𝑖𝑛 =  
1

2
[

𝐺𝐿
2

𝐻𝐿 + 𝜆
+

𝐺𝑅
2

𝐻𝑅 + 𝜆
−

(𝐺𝐿 + 𝐺𝑅)2

𝐻𝐿 + 𝐻𝑅 + 𝜆
] − 𝛾 

where 
𝐺𝐿

2

𝐻𝐿+𝜆
 is the score of the left node after the cut. 

𝐺𝑅
2

𝐻𝑅+𝜆
 is the score of the right node 

after the cut. 
(𝐺𝐿+𝐺𝑅)2

𝐻𝐿+𝐻𝑅+𝜆
 is the score of combination without the cut. Finally, the best structure of 

the model can be obtained which can minimize the objective function by enumerating different 

kinds of tree structures. 

4.4 Summary 

This chapter presents the methodology which will be used in travel time prediction. The 

idea of ensemble learning is introduced first. The detailed information on the decision tree 

algorithm, bagging algorithm, and boosting algorithm is then presented. The basic information 

about the Random Forest model and the gradient boosting model is also introduced. The 

advantages and disadvantages of each model are discussed. The basic information about the 

XGBoost model is also presented in this chapter. The advantages of the XGBoost model are 

listed. The detailed process of the XGBoost model is described including the objective function, 

regularization terms, and model score. 
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Chapter 5.  Travel Time Prediction Model Validation 

5.1 Introduction 

This chapter presents the validation of the proposed machine learning model based on the 

data described in Chapter 3. Section 5.2 shows the feature selection and pre-processing steps, 

and the features will include, but are not limited to: time of day, day of the week, month, weather 

conditions, and segment characteristics. Section 5.3 introduces the parameters in the model and 

discusses the parameters’ tuning process. Finally, section 5.4 concludes the chapter with a 

summary. 

5.2 Feature Selection and Pre-processing 

Determining which feature to use in the model is the most important factor of a 

successful machine learning algorithm (Domingos, 2012). The definition of feature engineering 

is “an act of extracting features from raw data and transforming them into the formats that are 

suitable for the machine learning model” (Zheng and Casari, 2018). Therefore, the quality of the 

features will have great influence on whether the travel time prediction model is good or not. 

The real-world travel time data provided by the RITIS website (which was mentioned in 

chapter 3) are used for this study. The quality of the data is precise enough with less than a 0.5% 

missing rate (4348 out of 906048). Therefore, this study simply replaces the missing values with 

the mean of its closest surrounding values. 

Based on previous studies (Min and Wynter, 2011; Wang et al., 2018), the features that 

influence the accuracy of travel time prediction may not only include the basic features (such as 

time of day, day of the week, month, and weather), but also include the spatial and temporal 

characteristics of the segments. Therefore, the travel time information from several steps before 

and the travel time information on adjacent segments are also selected and will be used in the 

model. 

Table 5.1 summarizes the basic information on the features used in this study and Table 

5.2 is an example of the dataset. In Table 5.2, the first 19 columns are the input variables that are 

used to predict travel time at time step t and the last column is the travel time. In some cases, the 

target variable will be transformed when it is not normally distributed, however, “since 

regression tree is the basic learner of XGBoost, there is no need to normalize samples, which 

means that features from different units would not affect the prediction result” (Dong et al. 

2018).   

For the Categorical Variable, the most commonly used method is One-hot encoding in 

the Python software. One-hot encoding is a process by which categorical variables are converted 

into a form that could be provided to machine learning algorithms to do a better job in prediction. 

For example, the category weekdays with 7 variables will be transferred as dummy variables. It 

should be noticed that if the range of category variable is too large (over hundreds of variables), 

this method is not suitable anymore.  

 

https://en.wikipedia.org/wiki/One-hot
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Table 5.1: Definitions and Attributes on Selected Features 

Variable Definition Attribute 

ID Segment ID Categorical 

L Length of the segment Categorical 

TOD The TOD is represented by every 15-minute timestep 

indexed from 1 to 96 

Categorical 

DOW The DOW is indexed from 1 to 7 to represent from 

Monday through Sunday 

Categorical 

Month 
 

The Month is indexed from 1 to 12 to represent 

January to December 

Categorical 

Weather Weather is indexed from 1 to 3 to represent normal, 

rain and snow/ice/fog, respectively 

Categorical 

𝑇𝑡−1 Travel time at time step t-1 (15 minutes before) Float 

𝑇𝑡−2 Travel time at time step t-2 (30  minutes before) Float 

𝑇𝑡−3 Travel time at time step t-3 (45 minutes before) Float 

∆𝑇𝑡−1 Travel time change value at time step t-1 (15 minutes 

before) 

Float 

∆𝑇𝑡−2 Travel time change value at time step t-2 (30 minutes 

before) 

Float 

∆𝑇𝑡−3 Travel time change value at time step t-3 (45 minutes 

before) 

Float 

𝑇𝑡−1
𝑖−1 Travel time of first upstream segment at time step t-1 

(15 minutes before) 

Float 

𝑇𝑡−1
𝑖−2 Travel time of second upstream segment at time step t-

1 (15 minutes before) 

Float 

∆𝑇𝑡−1
𝑖−1 Travel time change value of first upstream segment at 

time step t-1 (15 minutes before) 

Float 

∆𝑇𝑡−1
𝑖−2 Travel time change value of second upstream segment 

at time step t-1 (15 minutes before) 

Float 

𝑇𝑡−1
𝑖+1 Travel time of first downstream segment at time step t-

1 (15 minutes before) 

Float 

𝑇𝑡−1
𝑖+2 Travel time of second downstream segment at time 

step t-1 (15 minutes before) 

Float 

∆𝑇𝑡−1
𝑖+1 Travel time change value of first downstream segment 

at time step t-1 (15 minutes before) 

Float 

∆𝑇𝑡−1
𝑖+1 Travel time change value of second downstream 

segment at time step t-1 (15 minutes before) 

Float 

𝑇𝑡 Travel time at time step t Float 
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Table 5.2: Example of the Raw Inputs of the Model 

ID Weather TOD DOW Month L 𝑇𝑡−1 𝑇𝑡−2 𝑇𝑡−3 ... ∆𝑇𝑡−3 𝑇𝑡−1
𝑖−1 𝑇𝑡−1

𝑖−2 ∆𝑇𝑡−1
𝑖−1 ∆𝑇𝑡−1

𝑖−2 𝑇𝑡−1
𝑖+1 𝑇𝑡−1

𝑖+2 ∆𝑇𝑡−1
𝑖+1 ∆𝑇𝑡−1

𝑖+1 𝑇𝑡 

125-04790 normal 21 Friday 1 2.245989 121.91 121.54 127.10 ... -8.19 33.87 29.47 -0.31 -0.39 30.63 91.23 -0.21 1.24 116.28 

125-04790 normal 22 Friday 1 2.245989 116.28 121.91 121.54 ... 5.56 34.70 30.88 -0.83 -1.41 29.41 90.87 1.22 0.36 117.98 

125-04790 normal 23 Friday 1 2.245989 117.98 116.28 121.91 ... -0.37 34.35 30.12 0.35 0.76 28.75 86.16 0.66 4.71 113.31 

125-04790 normal 24 Friday 1 2.245989 113.31 117.98 116.28 ... 5.63 31.54 27.34 2.81 2.78 27.71 83.33 1.04 2.83 111.28 

125-04790 normal 25 Friday 1 2.245989 111.28 113.31 117.98 ... -1.70 31.33 26.36 0.21 0.98 27.50 82.45 0.21 0.88 108.89 

125-04790 normal 26 Friday 1 2.245989 108.89 111.28 113.31 ... 4.67 30.58 26.38 0.75 -0.02 27.20 83.74 0.30 -1.29 118.92 
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5.3 Parameter Tuning Process 

In the XGBoost model, there are many parameters that should be considered. 

There are three types of parameters: general parameters, booster parameters and task 

parameters. 

General parameters are related to which booster is being used to do boosting, 

commonly in the tree or linear models. In detail, the general parameters include: 

 Booster: Select the type of model to run at each iteration. It has 2 options: 

tree-based models and linear models. The default value of booster is ‘gbtree’. 

 Silent: Silent controls whether to print message. If the value is set to 1, no 

running messages will be printed. The default value of silent is 0. It is 

generally good to keep it as 0 since the messages might help in understanding 

the model. 

 Nthread: This parameter is used for controlling the parallel processing and 

the number of cores in the system that would be used. The default value is the 

maximum number of threads available on the computer. The algorithm will 

detect it automatically. 

Booster parameters depend on which booster one has chosen. For the tree booster 

in this study, the parameters include: 

 Learning rate: Learning rate is the rate at which the model learns patterns in 

data. After every round, it shrinks the feature weights to reach the best 

optimum. Lower learning rate leads to slower computation. The default value 

is 0.3. 

 Gamma: Gamma controls regularization (or prevents overfitting). The 

optimal value of gamma depends on the data set and other parameter values. 

The larger the gamma is, the more conservative the algorithm will be. The 

value of Gamma usually is 0. The default value is 0. 

 Max_depth: Maximum depth controls the depth of the tree. The larger the 

depth, the more complex the model, and the higher the chance of overfitting. 

There is no standard value for max_depth. Larger dataset requires deeper tree 

to learn the rules from data. The value of Max_depth usually ranges from 3 to 

10. The default value is 6. 

 Min_child_weight: Minimum child weight refers to the minimum number of 

instances required in a child node. It blocks the potential feature interactions 

to prevent overfitting. The default value is 1. 



27 

 Subsample: Percentage of samples used per tree. This parameter will also 

help to prevent overfitting. The value of subsample usually ranges from 0.5 to 

1. The default value is 1. 

 Colsample_bytree: Percentage of features used per tree. A high value can 

lead to overfitting. The value of colsample_bytree usually ranges from 0.5 to 

1. The default value is 1. 

 Lambda: This parameter can help to handle the regularization part of the 

XGBoost model. Usually, the value of Lambda is 1 and the default value is 1. 

 Alpha: This parameter can also help to handle the regularization part of the 

XGBoost model. The value of Alpha usually is 0 and the default value is 0. 

 N_estimators: This parameter refers to the number of trees one wants to build 

in the model. The number is up to the complexity of the model. 

Task parameters depend on the learning scenario. For example, regression tasks 

may use different parameters with ranking tasks. The task parameters include: 

 Objective: This parameter defines the task of learning (the loss function to be 

minimized). The mostly used values are ‘reg:linear’, ‘binary:logistic’,  

‘multi:softmax’ and ‘multi:softprob’. The default value is ‘reg:linear’. 

In order to optimize the modelling result, it is necessary to explore the effect of 

different combinations of parameters on the model performance. Based on previous 

studies (Zhang and Haghani, 2015; Dong et al. 2018), the parameters that could be 

optimized include, but are not limited to: N_estimators (number of trees), learning rate, 

and Max_depth (maximum depth of the tree). Therefore, these parameters are considered 

to be optimized in this study. 

There are several optimization methods considered in previous studies and the 

grid search method is the most widely used one. Therefore, the grid search method is 

selected as the optimization method with the consideration of time-efficiency. In this 

study, 80% of the traffic data is used as training data and 20% of the data is used as the 

testing data. The XGBoost model is fitted with a different number of trees (N_estimators 

ranges from 1 to 500), maximum depth (Max_depth ranges from 5 to 10) and learning 

rates (Learning_rate ranges from 0.1 to 0.5). The number of stopping rounds is set as 50, 

which means stopping iteration after 50 rounds when there is no performance 

improvement. 

Figure 5.1 to Figure 5.6 below show the effects of different selected variables on 

the prediction results. Table 5.3 below presents the detailed prediction results including 

the prediction results at each step, computation time, and optimized results. The mean 

absolute error (MAE) is used to evaluate the performance of the model.  

The equation of the MAE is provided below: 
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𝑀𝐴𝐸 =
1

𝑚
∑|𝑦𝑖 − 𝑦�̂�|

𝑚

𝑖=1

 

where,  

 

𝑚 = The total number of the data. 

𝑦𝑖 = The actual travel time value in the test dataset of record 𝑖. 

𝑦�̂�= The predicted travel time value in the test dataset of record 𝑖. 
 

 

Figure 5.1: XGBoost Travel Time Prediction Model Outputs with the Max_depth =5  
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Figure 5.2: XGBoost Travel Time Prediction Model Outputs with the Max_depth=6  

 

 

Figure 5.3: XGBoost Travel Time Prediction Model Outputs with the Max_depth=7  
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Figure 5.4: XGBoost Travel Time Prediction Model Outputs with the Max_depth=8  

 
Figure 5.5: XGBoost Travel Time Prediction Model Outputs with the Max_depth=9  
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Figure 5.6: XGBoost Travel Time Prediction Model Outputs with the Max_depth=10  

 

Based on Figure 5.1 to Figure 5.6 above, it can be concluded that the MAE value 

decreases as the number of trees increases, and the slopes of different learning rates are 
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respectively). The data in Table 5.4 shows that as the max_depth increases, the average 

computation time of the model also decreases a lot, which means the larger value of 

max_depth can not only increase the accuracy of the model a little bit but also increase 

the efficiency. 
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Table 5.3: MAEs of Different Learning Rates, Number of Trees and Max_depth 

Learnin

g rate 
MAE 

Max_depth=5 

 Number of trees 

 
1 3 5 10 20 50 100 500 

0.1 31.6232 25.6101 20.7441 12.3545 4.86309 2.1066 2.08573 2.01681 

0.2 28.105 17.9992 11.6453 4.43742 2.16435 2.11039 2.08105 2.03219 

0.3 24.5887 12.1685 6.37425 2.36127 2.14303 2.11073 2.09237 2.05376 

0.4 21.0772 7.91567 3.5855 2.19242 2.1688 2.13987 2.11298 NA 

0.5 17.5817 5.01915 2.47101 2.22655 2.20399 2.16189 2.13814 NA 

Max_depth=6 

 Number of trees 

 
1 3 5 10 20 50 100 500 

0.1 31.6239 25.6113 20.7459 12.352 4.84463 2.05099 2.03103 1.97875 

0.2 28.1064 17.9985 11.6379 4.42059 2.09807 2.05496 2.02066 1.98881 

0.3 24.5905 12.1655 6.35543 2.32393 2.09369 2.06605 2.04824 2.02001 

0.4 21.0791 7.9191 3.55346 2.12642 2.11301 2.08441 2.06326 NA 

0.5 17.5816 5.01106 2.4425 2.16502 2.14012 2.11357 2.11321 NA 

Max_depth=7 

 
Number of trees 

 
1 3 5 10 20 50 100 500 

0.1 31.6246 25.6126 20.7487 12.3503 4.83108 2.01236 1.9901 1.95178 

0.2 28.1076 18.0042 11.6389 4.40351 2.0696 2.01503 1.997 1.97402 

0.3 24.5923 12.1681 6.33938 2.29773 2.05536 2.02392 2.01867 2.00145 

0.4 21.0818 7.90891 3.52957 2.07265 2.06057 2.04777 2.0422 NA 

0.5 17.5864 4.99475 2.39171 2.08885 2.07452 2.07155 2.06401 NA 

Max_depth=8 

 Number of trees 

 
1 3 5 10 20 50 100 500 

0.1 31.6262 25.6164 20.7538 12.3515 4.82079 1.98521 1.96533 1.92991 

0.2 28.1107 18.0094 11.6371 4.38646 2.04197 1.984 1.968 1.94855 

0.3 24.5969 12.1703 6.33313 2.28103 2.01744 1.99892 1.99763 NA 

0.4 21.0879 7.90641 3.51711 2.04708 2.02954 2.01933 2.0176 NA 

0.5 17.5936 4.9815 2.36822 2.07031 2.05874 2.06077 NA NA 

Max_depth=9 

 Number of trees 

 
1 3 5 10 20 50 100 500 

0.1 31.6291 25.6203 20.7573 12.3507 4.80693 1.96347 1.94109 1.91498 

0.2 28.1168 18.0162 11.6391 4.3746 2.01152 1.95592 1.94509 1.93497 

0.3 24.606 12.1708 6.32246 2.25596 1.99238 1.97705 1.97125 NA 

0.4 21.0991 7.90241 3.51192 2.02939 2.01599 2.01326 NA NA 

0.5 17.6059 4.97653 2.35518 2.0485 2.03841 2.05002 NA NA 
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Learnin

g rate 
MAE 

Max_depth=10 

 Number of trees 

 
1 3 5 10 20 50 100 500 

0.1 31.6307 25.6248 20.7631 12.352 4.80107 1.94157 1.91908 1.89544 

0.2 28.1198 18.0198 11.6369 4.37085 2.00348 1.94777 1.94338 NA 

0.3 24.6101 12.1721 6.31815 2.24795 1.98632 1.97365 1.97672 NA 

0.4 21.1044 7.89797 3.50731 2.02597 2.01108 2.01454 NA NA 

0.5 17.6118 4.96814 2.3521 2.03704 2.04147 2.05903 NA NA 

 

Table 5.4: Optimized Prediction Results and Computation Times 

Learning rate 
Optimized 

Result (MAE) 

Number of 

Iterations 

Computation 

Time 

Max_depth =5 

0.1 2.01681 500 25 mins 

0.2 2.03219 500 25 mins 

0.3 2.05376 500 25 mins 

0.4 2.079 481 23 mins 

0.5 2.11782 217 9 mins 

Max_depth =6 

0.1 1.97875 500 25 mins 

0.2 1.98881 500 25 mins 

0.3 2.02001 500 25 mins 

0.4 2.05099 405 20 mins 

0.5 2.10818 107 5 mins 

Max_depth =7 

0.1 1.95178 500 25 mins 

0.2 1.97402 500 25 mins 

0.3 2.00145 500 25 mins 

0.4 2.03456 231 12 mins 

0.5 2.06401 81 4 mins 

Max_depth =8 

0.1 1.92991 500 25 mins 

0.2 1.94855 500 25 mins 

0.3 1.99435 281 17 mins 

0.4 2.0176 98 6 mins 

0.5 2.05619 73 4 mins 

Max_depth =9 

0.1 1.91498 500 25 mins 

0.2 1.93497 500 25 mins 

0.3 1.96895 167 8 mins 

0.4 2.01224 80 4 mins 

0.5 2.03841 70 4 mins 

Max_depth =10 

0.1 1.89544 500 25 mins 
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Learning rate 
Optimized 

Result (MAE) 

Number of 

Iterations 

Computation 

Time 
0.2 1.93876 352 18 mins 

0.3 1.97233 156 8 mins 

0.4 2.00963 74 4 mins 

0.8 2.03704 60 4 mins 

 

According to the experimental results, it can be concluded that:  

The accuracy level of slower learning rate with a larger number of trees in the 

model is higher than that of a faster learning rate with a smaller number of trees. The 

number of trees needed to get optimized result for the model with faster learning rate is 

also lower than those with slower learning rates.  

There is also a need to consider the tradeoff between prediction accuracy and 

computational time. Since a large number of trees is being fitted, model complexity also 

increases and requires more computational time. Therefore, the selection of the 

parameters such as max_depth and number of stopping round is important in the real 

world. 

In addition, the maximum depth of the tree also affects the optimized selection. 

When the learning rates and number of trees are the same, a higher maximum depth of 

the tree leads to the lower error rates. A higher max_depth is also more efficient than a 

lower value since the number of iterations needed to achieve optimized results is lower. 

In general, a higher max_depth value means a more complex tree model and requires 

fewer trees to be fitted with a given learning rate. 

 

5.4 Summary 

This chapter describes the validation process of the XGBoost-based travel time 

prediction model. The detailed information about the input features is presented. The 

parameters of the XGBoost model are also introduced. In order to achieve a better model 

performance, the parameter tuning process is discussed. The experimental results could 

give a clear picture of how the analyzed parameters impact the prediction performance.
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Chapter 6.  Prediction Results Analysis 

6.1 Introduction 

This chapter presents the evaluation of the proposed XGBoost model based on the 

results described in Chapter 5. Section 6.2 presents the analysis of the optimized 

prediction results from XGBoost model. Section 6.3 presents the performance 

comparison between the XGBoost model and gradient boosting model. Finally, section 

6.4 concludes this chapter with a summary. 

6.2 Modelling Results Analysis 

In machine learning area, the predictor variables, which are the features 

mentioned in Chapter 5, usually have significant impacts on the prediction results. 

Exploring the influence on the individual feature can help understand the data better. 

Higher relative importance indicates a stronger influence in predicting travel time. 

Table 6.1 presents the relative importance of each feature in the optimized 

XGBoost model. Each predictor variable has a different impact on the predicted travel 

time. Based on the importance rank of each variable, it can be found that the variable 

𝑇𝑡−1, which is the travel time at time step t-1 (15 minutes before), contributes the most to 

the predicted travel time. This result is expected and consistent with a previous study 

(Zhang and Haghani, 2015), which demonstrates that the immediate previous traffic 

condition will influence the traffic condition in the future. Therefore, this feature 𝑇𝑡−1 is 

the most important and highly correlated with the prediction value.  

The results in Table 6.1 show that time of day is the second ranked variable with 

the relative importance value of 34.85%, and this result is also expected. As mentioned 

by other studies, the travel time variability is also highly correlated with the time of day. 

The travel time usually increases a lot during peak hours and becomes stable during non-

peak hours.  

The third ranked variable is the segment ID with the relative importance value of 

12.65%. The potential reason behind this ranking could be that the segment ID indicates 

which segment it is. The segment ID contains a lot of potential information such as the 

geographic location of the segment. Based on the travel time variability analysis results 

of other studies, different segment locations contribute to different travel time variability 

characteristics. Therefore, the segment ID is also a necessary and important feature in the 

model. 

Day of week is the 4
th

 ranked variable in the model; the relative importance value 

of day of week is 3.76%. The variable day of week is also important in the model since 

the travel time is highly correlated with which day of the week it is. Based on previous 

studies, the traffic congestion on weekends is less frequent than on weekdays (Chen et 

al., 2017, Chen et al., 2018). The travel time during peak hours on Friday is usually 

higher than those on other weekdays (Wang et al., 2017). Therefore, the variable day of 
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week is important in the model; this result is consistent with a previous study (Zhang and 

Haghani, 2015). 

Weather is also considered in the model with a relative importance value of 

1.72%. Based on the results of other studies, inclement weather conditions may have a 

drastic impact on travel time variability. Therefore, the weather information is also useful 

in travel time prediction as adverse weather usually increases travel time. This finding is 

consistent with previous studies (Koesdwiady et al., 2016; Qiao et al., 2016). 

The travel time at time step t-1 (15 minutes before) is not the only variable with 

the consideration of temporal correlation. Several variables such as the travel time of the 

two steps and three steps ahead (with the relative importance value of 0.40% and 0.33%, 

respectively) and the travel time change value of the three time steps ahead (with the 

relative importance value of 0.24%, 0.47% and 0.27%, respectively) are considered in the 

model. These variables are also used in the model of previous studies which had used 

gradient boosting models to predict freeway travel time (Zhang and Haghani, 2015; 

Cheng et al., 2018). The time change variables are considered in this study because they 

could indicate the travel time change trends of the segments. However, the influences of 

these variables are relatively small. The outcome is similar to the outcome of a previous 

study (Cheng et al., 2018). 

With the consideration of spatial impact, several variables such as the travel time 

of the two upstream segments (with the relative importance value of 0.29% and 0.40%, 

respectively) and the travel time of the two downstream segments (with the relative 

importance value of 0.26% and 0.60%, respectively) one time-step ahead are considered 

in the model. With respect to the travel time change value, the relative importance values 

of the two upstream segments are both 0.28%, and the relative importance values of the 

two upstream segments are 0.36% and 0.69%, respectively. Based on these results, it 

could be found that the relative importance values of the downstream segments are higher 

than those of upstream segments. It could be explained by the spatial characteristics of 

the roadway. If a bottleneck occurs at the downstream segment, the upstream segment 

will be influenced shortly. 

Table 6.1: Relative Importance of Each Variable and Their Ranks in the Model 

Variable Relative Importance (%) Rank 

ID 12.65 3 

L 0.24 19 

TOD 34.85 2 

DOW 3.76 4 

Month 2.10 5 

Weather 1.72 6 

𝑇𝑡−1 38.87 1 
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Variable Relative Importance (%) Rank 

𝑇𝑡−2 0.40 10 

𝑇𝑡−3 0.33 13 

∆𝑇𝑡−1 0.24 19 

∆𝑇𝑡−2 0.47 9 

∆𝑇𝑡−3 0.27 17 

𝑇𝑡−1
𝑖−1 0.29 14 

𝑇𝑡−1
𝑖−2 0.40 10 

∆𝑇𝑡−1
𝑖−1 0.28 15 

∆𝑇𝑡−1
𝑖−2 0.28 15 

𝑇𝑡−1
𝑖+1 0.26 18 

𝑇𝑡−1
𝑖+2 0.60 8 

∆𝑇𝑡−1
𝑖+1 0.36 12 

∆𝑇𝑡−1
𝑖+1 0.69 7 

 

 

6.3 Model Comparison 

In order to examine the accuracy and effectiveness of the XGBoost model, this 

section comprehensively evaluates the modeling results of the XGBoost model and 

compares the results with those of the gradient boosting model. The prediction result of 

the gradient boosting model is also optimized using a grid search method. For clarity, the 

mean absolute percentage error (MAPE) is used to evaluate and compare the performance 

of the two models.  

The equation of the MAPE is provided below: 

𝑀𝐴𝑃𝐸 =
100%

𝑚
∑ |

𝑦𝑖 − 𝑦�̂�

𝑦𝑖
|

𝑚

𝑖=1

 

where, 

𝑚 = The total number of the data. 

𝑦𝑖 = The actual travel time value in the test dataset of record 𝑖. 

𝑦�̂�= The predicted travel time value in the test dataset of record 𝑖. 
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 Table 6.2 below presents the comparison between prediction results of the 

optimized XGBoost model and gradient boosting model. Based on the comparison, it 

could be concluded that the XGBoost model outperforms the gradient boosting model 

with both the consideration of accuracy and efficiency. The potential reason behind this 

could be as follows: 

In general, the XGBoost model is a more regularized form of the gradient 

boosting model. XGBoost uses advanced regularization terms, which improve model 

generalization capabilities. Therefore, the prediction results of the XGBoost model is 

more accurate than those of the gradient boosting model. At the same time, the 

computation time of the XGBoost model (25 mins) is much faster than that of the 

gradient boosting model (2 hours). One important reason behind the better performance 

of the XGBoost model could be the parallel processing function. The gradient boosting 

model is extremely difficult to parallelize since it has sequential characteristics. In 

comparison, XGBoost can allow us to do the boosting work using distributed processing 

engines. 

Another key reason is the XGBoost model implements the early stopping 

function, which means that one can stop model assessment when additional trees (see 

Chapter 5) offer no improvement to the prediction results. This function can help us not 

only prevent overfitting problem, but also improve the efficiency of the model 

significantly. 

 

Table 6.2: Performance Comparison between XGBoost Model and Gradient Boosting Model 

Number of Trees MAPE XGBoost (%) 
MAPE Gradient Boosting 

(%) 

3 14.64 35.10 

10 5.22 24.33 

20 5.22 16.78 

50 4.87 13.56 

100 4.82 11.11 

200 4.74 9.38 

500 4.72 5.67 

Average computation time 11.8 mins Over one hour 

 

6.4 Summary 

This chapter describes the numerical results of the developed XGBoost model. 

The relative importance of each variable in the model is presented and interpreted. In 

order to examine the accuracy and effectiveness of the proposed model, this chapter also 

evaluates the optimized modeling results of the proposed XGBoost travel time prediction 
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model and compares them with those of the gradient boosting model. The results 

demonstrate that the developed XGBoost travel time prediction model significantly 

improves the computation accuracy and efficiency. 
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Chapter 7.  Summary and Conclusions 

 

7.1 Summary 

Travel time is an important performance measure for assessing freeway traffic conditions 

and the extent of highway congestion. Anonymous vehicle probe data is a reliable source for 

freeway travel time analysis since it greatly improves both data coverage and data fidelity. With 

the development of machine learning technologies, various novel algorithms have been 

developed during recent years (Jordan and Mitchell, 2015). Typically, these new technologies 

aim to increase the accuracy and efficiency of the data prediction. One of the representative 

technologies is the XGBoost model. In recent years, the XGBoost model has gained popularity 

by winning many data science competitions (e.g., Kaggle competition). Therefore, the XGBoost 

model has the potential to be applied in transportation-related data analysis fields such as traffic 

flow, travel speed and travel time prediction. 

The primary objective of this research is to develop a methodology for conducting the 

XGBoost model-based travel time prediction. A real-world freeway corridor is selected as the 

case study to examine the XGBoost prediction model so that the gaps between the theoretical 

research and the application of the developed model can be bridged. 

The rest of this chapter is organized as follow: Section 7.2 presents a summary of 

conclusions of the numerical results derived from the proposed XGBoost travel time prediction 

model; Section 7.3 gives a brief discussion of the limitations of the current approaches and 

provides future research directions. 

 

7.2 Summary and Conclusions of Travel Time Prediction Results 

Regarding the travel time prediction, it is found that the XGBoost model can provide 

reliable prediction results. The relationships between several important parameters in the model 

(e.g. number of trees, learning rate, and maximum depth of the tree) are discussed in this study. 

In detail, the accuracy level of a slower learning rate with a larger number of trees in the model is 

higher than that of a faster learning rate with a smaller number of trees. A higher max_depth 

value is also more efficient than a lower value since the number of iterations needed to achieve 

optimized results is smaller. 

The relative importance of the features shows that the travel time one step ahead (15 

minutes before) contributes the most to the predicted travel time. Features such as the time of 

day, day of the week and weather also have higher relative importance values in the model than 

other features. 

The proposed XGBoost-based travel time prediction method has considerable advantages 

over the gradient boosting approach. The performance evaluation result shows that the XGBoost-

based model can have better outcomes in terms of both prediction accuracy and efficiency. 
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7.3 Future Work Directions 

Typically, the XGBoost-based travel time prediction model can provide reliable results 

with low error rates. However, the impacts of accidents and roadworks on travel time prediction 

are also worth exploring. In the future, how to incorporate these features in the model will be 

studied if the data can be made available.  

Furthermore, the performance of the travel time prediction model is discussed under all 

conditions as a whole. In the future, the performances of the model under different traffic 

conditions (such as both non-congested and congested conditions) can be learned and compared. 
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	Chapter 1.  Introduction
	Chapter 1.  Introduction
	 

	1.1 Problem Statement 
	Nowadays anonymous vehicle probe data have been greatly improved in both data coverage and data fidelity, and thus have become a reliable source for freeway travel time analysis. Travel time prediction plays a significant role in traffic data analysis and applications as it can greatly help in route planning and reducing traffic congestion. Traditionally, methods such as linear regression and time series models have been widely applied to predict travel times using historical data. However, with the conside
	1.2 Motivation of Study 
	The purpose of this project is to develop a systematic approach to predicting freeway travel time. An advanced machine learning-based approach (i.e. XGBoost model) is employed to predict the freeway travel time. The prediction methodology can assist the decision makers in planning, designing, operating, and managing a more efficient highway system.  
	1.3 Objectives of Study 
	Specific objectives are to: 1) Develop the travel time prediction model using an advanced, efficient and accurate machine learning-based approach, 2) Select a real-world freeway corridor to examine the developed prediction model, and 3) Evaluate the prediction results of the developed model. 
	1.4 Report Overview 
	The report will be structured as shown in Figure 1.1. In this chapter, the significance and motivation of the study on travel time prediction have been discussed, followed by the description of study objectives. 
	Chapter 2 presents a comprehensive review of the current state-of-the-art and state-of-the-practice travel time prediction methodologies. In detail, several machine learning-based methods used by the reviewed studies including the neural network approach, ensemble learning approach, K-nearest neighbor (K-NN) approach, and support vector machine approach, will be presented.  
	Chapter 3 describes the basic information needed to predict travel time, including the travel time data and historical weather data utilized in this study. Detailed information about the 
	raw travel time data source is described first, followed by the discussions about weather data collection. 
	Chapter 4 presents the travel time prediction methodology which is utilized in this study. The idea of ensemble learning is introduced first. Detailed information on the decision tree algorithm, bagging algorithm, and boosting algorithm is presented. The basic information about the Random Forest and gradient boosting models is described including advantages and disadvantages. An introduction of the XGBoost model is also presented in this chapter. Advantages of the XGBoost model are listed. The detailed proc
	Chapter 5 discusses the validation steps of the proposed XGBoost-based travel time prediction model based on the data described in Chapter 3. Selected features include, but are not limited to, the following: time of day (TOD), day of week (DOW), month of year, year, weather conditions, segment characteristics, etc. Detailed information about the input variables and data pre-processing is presented. The parameters of the XGBoost model are introduced and the parameter tuning process is also discussed. The exp
	Chapter 6 presents the interpretation and evaluation of the numerical results of the developed XGBoost model. The relative importance of each variable in the model is presented and interpreted. In order to examine the accuracy and effectiveness of the proposed model, this chapter also evaluates the optimized modeling results of the proposed XGBoost travel time prediction model and compares them with those of the gradient boosting model. The results also demonstrate that the developed XGBoost travel time pre
	Chapter 7 concludes the study with a summary of the discussions about the developed travel time prediction model and the modeling results. Suggestions for future research are also provided. 
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	Chapter 2.  Literature Review
	Chapter 2.  Literature Review
	 

	2.1 Introduction 
	This chapter provides a comprehensive review of machine learning-based travel time prediction studies. This should give a clear picture of existing efforts toward the travel time prediction. 
	The following sections are organized as follows. Section 2.2 gives a comprehensive review of existing machine learning-based travel time prediction studies. Section 2.3 concludes this chapter with a summary. 
	2.2 Travel Time Prediction Using Machine Learning Approaches 
	Traditionally, methods such as linear regression and time series models have been widely applied to predict travel times using historical data. However, with the consideration of effectiveness, accuracy and feasibility, these models may become outdated and replaceable. With the development of artificial intelligence technologies, various novel prediction methods have been developed accordingly in recent years. With the help of intelligent transportation systems (ITS) and the traffic data, different machine 
	2.2.1 Support Vector Machine (SVM) Approach 
	 2.3.1.1 Wu et al.’s research work 
	Wu et al. (2004) applied SVM for travel-time prediction and compared its results to other baseline travel time prediction methods using real world highway traffic data. Since support vector machines have greater generalization ability and can guarantee global minima for given training data, it was believed that SVM would perform well for time series analysis. The results showed that the SVM predictor can significantly reduce both relative mean errors and root-mean-squared errors of predicted travel times. T
	2.2.2 Neural Network Approach 
	 2.3.2.1 Park and Rilett’s research work 
	Park and Rilett (1999) proposed a BP neural network model to predict freeway link travel time. The freeway link travel time data collected on the freeways of Houston, Texas, by the automatic vehicle identification (AVI) system were used as the validation database. 
	The proposed model can provide acceptable prediction results with the mean absolute percentage error (MAPE) being ranged from 7.4% to 18%. 
	 2.3.2.2 Van Lint et al.’s research work 
	Van lint et al. (2002) presented an approach to predicting freeway travel time based on the state-space neural network. The data from freeway operations simulation (FOSIM) 4.1 were used to train and test the travel time prediction model. The authors also eliminated the insignificant parameters in the model and made it more effective without the loss of predictive performance. 
	 2.3.2.3 Wisitpongphan et al.’s research work 
	Wisitpongphan et al. (2012) proposed a back propagation (BP) neural network model to predict freeway link travel time. The one-month vehicle trajectory data of 297 probe vehicles via GPS database in Thailand were used as the validation database. The prediction results of the proposed model can accurately approximate the travel time with the mean squared error (MSE) being less than 3%. 
	 2.3.2.4 Zheng and Van Zuylen’s research work 
	Zheng and Van Zuylen (2013) conducted a study using the probe vehicle data to estimate complete link travel times. Based on the information collected by probe vehicles, a three-layer neural network model was developed by the authors to estimate complete link travel time for individual probe vehicle traversing the link. The estimation result of this model was then compared with that of an analytical estimation model. The performance of these two models were evaluated using the data derived from VISSIM simula
	 2.3.2.5 Duan et al.’s research work 
	Duan et al. (2016) employed a long short-term memory (LSTM) neural network model to predict freeway travel time. The authors constructed 66 series LSTM neural networks by using travel time data collected along 66 links of the highways in England. The authors discussed the predictions of multi-step ahead travel time and found 1-step ahead travel time prediction can provide best results. 
	 2.3.2.6 Liu et al.’s research work 
	Liu et al. (2017) proposed a LSTM deep neural network model using 16 settings of hyper-parameters to predict the travel time on the interstate highways in California, U.S. The results of proposed model were compared with the results of other regression models and Autoregressive integrated moving average (ARIMA) model and showed that the performance of the LSTM neural network model was the best. 
	 2.3.2.7 Wang et al.’s research work 
	Wang et al. (2018) presented a novel machine learning method to predict the vehicle travel time based on floating-car data. The authors adapted different machine learning models to solve the regression problem. Furthermore, the authors evaluated the solution offline with millions of historical vehicle travel data and the results showed that their 
	proposed deep learning algorithm significantly outperforms the other state-of-the-art algorithms. 
	 2.3.2.8 Wang et al.’s research work 
	Wang et al. (2018) proposed a LSTM neural network-based travel time prediction model using the historical vehicle trajectory data. Both road segment-based travel time estimation and path-based travel time estimation were discussed in this study. The results showed that the proposed model can effectively capture the spatial and temporal dependencies and accurately predict travel time. 
	 2.3.2.9 Wei et al.’s research work 
	Wei et al. (2018) combined the convolutional neural network and LSTM neural network together to predict the short-term travel time. The vehicle trajectory data on the urban roads were used in this study. The author pointed out that the prediction of the proposed model was more effective than that of other existing approaches. 
	2.2.3 Nearest Neighbors Approach 
	 2.3.3.1 Yu et al.’s research work 
	Yu et al. (2017) combined the Random Forest model and K-NN model in their study to predict bus travel time. The proposed combined-model was compared with linear regression, K-NN, SVM and Random Forest. The results showed the proposed model achieved highest accuracy level and can be applied to real-time prediction.  
	 2.3.3.2 Myung et al.’s research work 
	Myung et al. (2011) proposed a model to predict travel times on the basis of the k nearest neighbor (KNN) method using data provided by the vehicle detector system and the automatic toll collection system. By combining these two sets of data, the model minimized the limitations of each dataset and enhanced the prediction’s accuracy. The authors compared the prediction results of the proposed model with the predictions of other models by using actual data. The comparison results showed that the proposed mode
	 2.3.3.3 Moonam et al.’s research work 
	Moonam et al. (2019) conducted a study to predict the expected travel time based on the experienced travel time using the data mining techniques such as k-nearest neighbor (k-NN), least squares regression boosting and Kalman filter (KF) methods. The authors compared the performances of each methods from both link and corridor perspectives and concluded that the KF method offers superior prediction accuracy in a link-based model. 
	2.2.4 Ensemble Learning Approach 
	 2.3.4.1 Hamner et al.’s research work 
	Hamner et al. (2011) applied a context-dependent Random Forest method to predict travel-time based on GPS data of the cars on the road in a simulation framework. The root mean squared error (RMSE) of the model was less than 7.5%.  
	 2.3.4.2 Zhang and Haghani’s research work 
	Zhang and Haghani (2015) employed a gradient boosting regression tree method to analyze and predict freeway travel time to improve the prediction accuracy. The authors used travel time data along freeway sections in Maryland and discussed the effects of different parameters on the proposed model and the correlations of input and output variables. The prediction results showed the proposed model can provide considerable advantages in freeway travel time prediction. 
	 2.3.4.3 Li and Bai’s research work 
	Li and Bai (2016) employed a gradient boosting regression tree method to analyze and predict travel time of freight vehicles. The authors used travel time data and vehicle trajectory data in Ningbo, China. The prediction results showed the proposed model can be feasible in the real-world. 
	 2.3.4.4 Fan et al.’s research work 
	Fan et al. (2017) conducted a study using the Random Forest method to predict highway travel time based on data collected from highway electronic toll collection in Taiwan. The results can help highway drivers to select optimal departure times to avoid traffic congestion and thus minimize travel time. 
	 2.3.4.5 Gupta et al.’s research work 
	Gupta et al. (2018) employed Random Forest and gradient boosting models to predict taxi travel time in Porto, Portugal. The vehicle trajectory data were used as the database and it was found that the gradient boosting model provided better prediction results than the Random Forest model.
	Table 2.1: Summary of Travel Time Prediction Using Machine Learning Approaches 
	Year 
	Year 
	Year 
	Year 

	Author 
	Author 

	Location 
	Location 

	Roadway Category 
	Roadway Category 

	Data Source 
	Data Source 

	Data 
	Data 
	Type 

	Prediction method 
	Prediction method 

	Span

	1999 
	1999 
	1999 

	Park and Rilett 
	Park and Rilett 

	Houston, US 
	Houston, US 

	Highway 
	Highway 

	AVI system 
	AVI system 

	Travel time 
	Travel time 

	BP Neural Network 
	BP Neural Network 

	Span

	2002 
	2002 
	2002 

	Van Lint et al. 
	Van Lint et al. 

	N/A 
	N/A 

	Freeway 
	Freeway 

	FOSIM (freeway operations simulation) 
	FOSIM (freeway operations simulation) 

	Travel time, travel speed 
	Travel time, travel speed 

	State-Space Neural Network 
	State-Space Neural Network 


	2005 
	2005 
	2005 

	Wu et al. 
	Wu et al. 

	Taiwan 
	Taiwan 

	Highway 
	Highway 

	Loop detector 
	Loop detector 

	Travel speed 
	Travel speed 

	SVM 
	SVM 


	2010 
	2010 
	2010 

	Hamner et al. 
	Hamner et al. 

	N/A 
	N/A 

	N/A 
	N/A 

	Global Positioning System (GPS) 
	Global Positioning System (GPS) 

	Travel speed 
	Travel speed 

	Random Forest 
	Random Forest 


	2011 
	2011 
	2011 

	Myung et al. 
	Myung et al. 

	Korea 
	Korea 

	N/A 
	N/A 

	Automatic traffic count system 
	Automatic traffic count system 

	Travel time 
	Travel time 

	K-NN 
	K-NN 


	2012 
	2012 
	2012 

	Wisitpongphan 
	Wisitpongphan 

	Bangkok, Thailand 
	Bangkok, Thailand 

	Highway 
	Highway 

	GPS 
	GPS 

	Travel time, GPS 
	Travel time, GPS 

	BP Neural Network 
	BP Neural Network 


	2013 
	2013 
	2013 

	Zheng and Van Zuylen 
	Zheng and Van Zuylen 

	Delft, Netherlands 
	Delft, Netherlands 

	Urban road 
	Urban road 

	GPS data 
	GPS data 

	Vehicle position, travel speed 
	Vehicle position, travel speed 

	State-Space Neural Network 
	State-Space Neural Network 


	2015 
	2015 
	2015 

	Zhang and Haghani 
	Zhang and Haghani 

	Maryland, US 
	Maryland, US 

	Interstate highway 
	Interstate highway 

	INRIX Company 
	INRIX Company 

	Travel time 
	Travel time 

	Gradient boosting 
	Gradient boosting 


	2016 
	2016 
	2016 

	Duan et al. 
	Duan et al. 

	England 
	England 

	Highway 
	Highway 

	Cameras, GPS and loop detectors 
	Cameras, GPS and loop detectors 

	Travel time 
	Travel time 

	LSTM Neural Network 
	LSTM Neural Network 


	2016 
	2016 
	2016 

	Li and Bai 
	Li and Bai 

	Ningbo, China 
	Ningbo, China 

	N/A 
	N/A 

	N/A 
	N/A 

	Truck trajectory, travel time, travel speed 
	Truck trajectory, travel time, travel speed 

	Gradient boosting 
	Gradient boosting 


	2017 
	2017 
	2017 

	Liu et al. 
	Liu et al. 

	California, US 
	California, US 

	Interstate highway 
	Interstate highway 

	Freeway performance measurement system (PeMS) 
	Freeway performance measurement system (PeMS) 

	Travel time 
	Travel time 

	LSTM Neural Network 
	LSTM Neural Network 


	2017 
	2017 
	2017 

	Fan et al. 
	Fan et al. 

	Taiwan 
	Taiwan 

	Highway 
	Highway 

	Electric toll 
	Electric toll 

	Travel time, vehicle information 
	Travel time, vehicle information 

	Random Forest  
	Random Forest  


	2017 
	2017 
	2017 

	Yu et al. 
	Yu et al. 

	Shenyang, China 
	Shenyang, China 

	Bus route 
	Bus route 

	Automatic Vehicle Location system 
	Automatic Vehicle Location system 

	Bus travel time 
	Bus travel time 

	Random Forest and K-NN 
	Random Forest and K-NN 


	2018 
	2018 
	2018 

	Wang et al. 
	Wang et al. 

	Beijing, China 
	Beijing, China 

	Urban road 
	Urban road 

	Floating car data 
	Floating car data 

	Taxi ravel time, vehicle trajectory data 
	Taxi ravel time, vehicle trajectory data 

	LSTM Neural Network 
	LSTM Neural Network 


	2018 
	2018 
	2018 

	Wei et al. 
	Wei et al. 

	China 
	China 

	Urban road 
	Urban road 

	Vehicle passage records  
	Vehicle passage records  

	Travel time 
	Travel time 

	LSTM Neural Network 
	LSTM Neural Network 


	2018 
	2018 
	2018 

	Wang et al. 
	Wang et al. 

	Beijing and Chengdu, China 
	Beijing and Chengdu, China 

	Urban road 
	Urban road 

	GPS 
	GPS 

	Vehicle trajectory data 
	Vehicle trajectory data 

	LSTM Neural Network 
	LSTM Neural Network 


	2018 
	2018 
	2018 

	Gupta et al. 
	Gupta et al. 

	Porto, Portugal 
	Porto, Portugal 

	Urban road 
	Urban road 

	GPS 
	GPS 

	Taxi travel speed 
	Taxi travel speed 

	Random forest and gradient boosting 
	Random forest and gradient boosting 


	2019 
	2019 
	2019 

	Moonam et al. 
	Moonam et al. 

	Madison, Wisconsin, US 
	Madison, Wisconsin, US 

	Freeway 
	Freeway 

	Bluetooth detector 
	Bluetooth detector 

	Travel speed 
	Travel speed 

	K-NN, KF 
	K-NN, KF 

	Span


	 
	2.3 Summary 
	A comprehensive review and synthesis of the current and historical researches related to travel time prediction have been discussed and presented in the preceding sections. This is intended to provide a solid reference and assistance in developing travel time prediction models. 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Chapter 3.  Data Collection and Processing
	Chapter 3.  Data Collection and Processing
	 

	3.1 Introduction 
	This chapter provides the basic information needed to conduct travel time prediction, including the travel time data and historical weather data utilized in this study. The following sections are organized as follows. Section 3.2 presents detailed information about the raw travel time data source, followed by the discussions about weather data collection in section 3.3. Section 3.4 describes details of data processing. Finally, section 3.5 concludes this chapter with a summary. 
	 
	3.2 Travel Time Data Collection 
	This study focuses on the travel time data gathered from the Regional Integrated Transportation Information System (RITIS) website and uses the collected data to conduct the TTR analysis and travel time prediction. A series of major freeway segments are selected for the case study: Interstate 77 (I-77) Southbound (Figure 3.1) is one of the most heavily traveled Interstate highways in Charlotte, North Carolina and runs from north to south. All the selected segments have uninterrupted coverage of RITIS data 2
	The selected section of I-77 Southbound starts from the intersection with US-21 (Exit 16) and ends at the interchange with Nations Ford Road (Exit 4) at the south part of the city. 26 roadway segments are selected in this study, and the total length of the selected section is 15 miles. 
	  
	Figure 3.1: Selected I-77 Southbound Section 
	 
	The raw probe data can be downloaded with the desired section and format on the RITIS website probe data analytic suite. The roadway section can be selected based on the road location, traffic message channel (TMC), directions, zip codes, etc. The date range can be selected from January 1st, 2008 to today. Seven days of week and times of day from 12:00 AM to 11:59 PM can also be selected. The averaging period can be selected as five minutes, ten minutes, fifteen minutes and one hour. A sample of raw travel 
	Table 3.1: Sample Raw Travel Time Data 
	Table
	TR
	TD
	Span
	Timestamp 

	TD
	Span
	TMC code 

	TD
	Span
	Travel time (s) 

	Span

	1/1/2015 0:00 
	1/1/2015 0:00 
	1/1/2015 0:00 

	125-04785 
	125-04785 

	5.16 
	5.16 

	Span

	1/1/2015 0:00 
	1/1/2015 0:00 
	1/1/2015 0:00 

	125-04782 
	125-04782 

	35.68 
	35.68 

	Span

	1/1/2015 0:00 
	1/1/2015 0:00 
	1/1/2015 0:00 

	125-04783 
	125-04783 

	33.22 
	33.22 

	Span

	1/1/2015 0:00 
	1/1/2015 0:00 
	1/1/2015 0:00 

	125N04789 
	125N04789 

	54.5 
	54.5 

	Span

	1/1/2015 0:00 
	1/1/2015 0:00 
	1/1/2015 0:00 

	125N04787 
	125N04787 

	53.76 
	53.76 

	Span

	1/1/2015 0:00 
	1/1/2015 0:00 
	1/1/2015 0:00 

	125N04788 
	125N04788 

	29.6 
	29.6 

	Span

	1/1/2015 0:00 
	1/1/2015 0:00 
	1/1/2015 0:00 

	125N04781 
	125N04781 

	12.42 
	12.42 

	Span

	1/1/2015 0:00 
	1/1/2015 0:00 
	1/1/2015 0:00 

	125N04782 
	125N04782 

	21.73 
	21.73 

	Span

	1/1/2015 0:00 
	1/1/2015 0:00 
	1/1/2015 0:00 

	125N04780 
	125N04780 

	14.59 
	14.59 

	Span

	1/1/2015 0:00 
	1/1/2015 0:00 
	1/1/2015 0:00 

	125N04785 
	125N04785 

	11.85 
	11.85 

	Span

	1/1/2015 0:00 
	1/1/2015 0:00 
	1/1/2015 0:00 

	125N04786 
	125N04786 

	47.56 
	47.56 

	Span

	1/1/2015 0:00 
	1/1/2015 0:00 
	1/1/2015 0:00 

	125N04783 
	125N04783 

	12.82 
	12.82 

	Span

	1/1/2015 0:00 
	1/1/2015 0:00 
	1/1/2015 0:00 

	125N04784 
	125N04784 

	53.58 
	53.58 

	Span


	 
	Table 3.1 contains the following information: 
	TMC Code: The RITIS Probe Data Analytics Suite uses the TMC standard to uniquely identify each road segment. This column indicates the segment ID. 
	Timestamp: This column indicates the timestamp of the record. 
	Travel time: This column indicates the time it will take to drive along the roadway segment. 
	 
	3.3 Weather Data Collection 
	The historical weather data near the Charlotte Douglas International airport can be found at the 
	The historical weather data near the Charlotte Douglas International airport can be found at the 
	www.wunderground.com
	www.wunderground.com

	 website. The raw weather data from this website were recorded per hour. Due to the discrepancy in the time interval, one-to-one mapping or correlation study cannot be done using the original data. Hence, the methodology to combine the traffic data with the weather data will be discussed in the next section. The sample of weather data achieved is shown in Table 3.2 below. 

	Table 3.2: Sample Raw Weather Data 
	Table
	TR
	TD
	Span
	Date 

	TD
	Span
	Time (EDT) 

	TD
	Span
	Conditions 

	Span

	Saturday, March 14, 2015 
	Saturday, March 14, 2015 
	Saturday, March 14, 2015 

	6:55 AM 
	6:55 AM 

	Rain 
	Rain 

	Span

	Saturday, March 14, 2015 
	Saturday, March 14, 2015 
	Saturday, March 14, 2015 

	7:55 AM 
	7:55 AM 

	Rain 
	Rain 

	Span

	Saturday, March 14, 2015 
	Saturday, March 14, 2015 
	Saturday, March 14, 2015 

	8:55 AM 
	8:55 AM 

	Light Rain 
	Light Rain 

	Span

	Saturday, March 14, 2015 
	Saturday, March 14, 2015 
	Saturday, March 14, 2015 

	9:55 AM 
	9:55 AM 

	Light Rain 
	Light Rain 

	Span

	Saturday, March 14, 2015 
	Saturday, March 14, 2015 
	Saturday, March 14, 2015 

	10:55 AM 
	10:55 AM 

	Light Rain 
	Light Rain 

	Span

	Saturday, March 14, 2015 
	Saturday, March 14, 2015 
	Saturday, March 14, 2015 

	11:55 AM 
	11:55 AM 

	Light Rain 
	Light Rain 

	Span

	Saturday, March 14, 2015 
	Saturday, March 14, 2015 
	Saturday, March 14, 2015 

	12:55 PM 
	12:55 PM 

	Light Rain 
	Light Rain 

	Span

	Saturday, March 14, 2015 
	Saturday, March 14, 2015 
	Saturday, March 14, 2015 

	1:55 PM 
	1:55 PM 

	Light Rain 
	Light Rain 

	Span

	Saturday, March 14, 2015 
	Saturday, March 14, 2015 
	Saturday, March 14, 2015 

	2:55 PM 
	2:55 PM 

	Light Rain 
	Light Rain 

	Span

	Saturday, March 14, 2015 
	Saturday, March 14, 2015 
	Saturday, March 14, 2015 

	3:55 PM 
	3:55 PM 

	Light Rain 
	Light Rain 

	Span

	Saturday, March 14, 2015 
	Saturday, March 14, 2015 
	Saturday, March 14, 2015 

	4:55 PM 
	4:55 PM 

	Rain 
	Rain 

	Span


	 
	3.4 Data Processing 
	Due to the weather characteristics in the Charlotte area and the distribution of each weather category, detailed weather conditions are categorized into three groups including normal, rain, and snow/fog/ice. Table 3.3 presents the detailed classification of the weather conditions. Conditions such as “overcast” or “mostly cloudy” are assumed to be no different from “clear” conditions due to no obvious impact on traffic conditions. These conditions are categorized into ‘normal’. All the conditions such as ‘ra
	 
	 
	Table 3.3: Classification of the Weather Conditions 
	Table
	TR
	TH
	Span
	New Weather Category 

	TH
	Span
	Original Weather Condition 

	Span

	Snow/fog/ice 
	Snow/fog/ice 
	Snow/fog/ice 

	Haze 
	Haze 

	Span

	TR
	Fog 
	Fog 

	Span

	TR
	Smoke 
	Smoke 

	Span

	TR
	Patches of Fog 
	Patches of Fog 

	Span


	Table
	TR
	TH
	Span
	New Weather Category 

	TH
	Span
	Original Weather Condition 

	Span

	TR
	Mist 
	Mist 

	Span

	TR
	Shallow Fog 
	Shallow Fog 

	Span

	TR
	Light Freezing R 
	Light Freezing R 

	Span

	TR
	Light Ice Pellet 
	Light Ice Pellet 

	Span

	TR
	Light Freezing D 
	Light Freezing D 

	Span

	TR
	Light Freezing F 
	Light Freezing F 

	Span

	TR
	Ice Pellets 
	Ice Pellets 

	Span

	TR
	Light Snow 
	Light Snow 

	Span

	TR
	Snow 
	Snow 

	Span

	TR
	Heavy Snow 
	Heavy Snow 

	Span

	Normal 
	Normal 
	Normal 

	Clear 
	Clear 

	Span

	TR
	Partly Cloudy 
	Partly Cloudy 

	Span

	TR
	Mostly Cloudy 
	Mostly Cloudy 

	Span

	TR
	Scattered Clouds 
	Scattered Clouds 

	Span

	TR
	Overcast 
	Overcast 

	Span

	TR
	Unknown 
	Unknown 

	Span

	Rain 
	Rain 
	Rain 

	Light Rain 
	Light Rain 

	Span

	TR
	Rain 
	Rain 

	Span

	TR
	Heavy Rain 
	Heavy Rain 

	Span

	TR
	Light Drizzle 
	Light Drizzle 

	Span

	TR
	Heavy Thunderstorm 
	Heavy Thunderstorm 

	Span

	TR
	Light Thunderstorm 
	Light Thunderstorm 

	Span

	TR
	Thunderstorm 
	Thunderstorm 

	Span

	TR
	Drizzle 
	Drizzle 

	Span

	TR
	Squalls 
	Squalls 

	Span


	 
	 
	 
	3.5 Summary 
	This chapter presents the detailed information on the data source, data structure, and processing methodology to combine the travel time with raw weather data. This is intended to provide a solid reference and assistance in predicting travel time for future tasks.  
	 
	Chapter 4.  Travel Time Prediction Methodology
	Chapter 4.  Travel Time Prediction Methodology
	 

	4.1 Introduction 
	This chapter presents the introduction to the travel time prediction methodology. The following sections are organized as follows. Section 4.2 shows the basic information about the ensemble learning methodology, which includes the ideas of bagging algorithm and boosting algorithm. Section 4.3 discusses the principles of the XGBoost algorithm. Finally, section 4.4 concludes this chapter with a summary. 
	 
	4.2 Basic Information on the Ensemble Learning Methodology 
	 
	The ensemble learning-based algorithms consist of multiple base models (e.g., decision tree model), and each base model provides an alternative solution to the problem. The prediction results of these base models are combined by some rules (such as weighted or unweighted voting and averaging). The final output will be achieved through the combined model.  
	The base model of the ensemble learning algorithm is extremely important to the final results. Since the model is expected to have enough degrees of freedom to solve the underlying complexity of the data and avoid high variance and be more robust at the same time, the two most fundamental characteristics of the base model should be a low bias and a low variance. In other words, the base model should be a ‘weak learner’ and needs to be converted to a ‘strong learner’. In machine learning area, a ‘weak learne
	Decision tree is a basic data-driven supervised learning method and has been widely used in the data mining area (Quinlan, 1986; Han and Kamber, 2011). A single decision tree is constructed by splitting the features’ space into regions. The target variable can be predicted by using the values of a set of features.  
	In detail, the pseudo-code for decision tree is shown below in Figure 4.1, which can make it easier to understand the idea of decision tree algorithm. 
	 
	Figure 4.1: Pseudo-code for Decision Tree  
	Source: Quinlan (1986) 
	Tree model is one type of the base models that are commonly used for ensemble learning. Tree model can be very sensitive, even small perturbations in the training data can lead to very different trees. This unique property makes the tree model a good candidate for ensemble learning. In addition, the computation process of tree model is fast and easy, which can reduce model complexity and improve the efficiency.  
	Overfitting means that a function fits the data too well. Typically, this is because the actual equation is too complicated to consider each data point and outlier. The tree-based ensemble method can build a large number of different trees and then combine the results from each individual tree. The benefit of using an ensemble tree is that through averaging, the variance can be reduced. 
	The purpose of an ensemble learning algorithm is to achieve an improved result by combining predictions of a group of individual base models. It has been shown that the combined model often generates more stable and accurate predictions in many applications (Leblanc and Tibshirani, 1996; Banfield et al., 2006). 
	Bagging and boosting are both ensemble techniques, where a set of base models are combined to create a model that obtains better performance than a single model. However, they utilize different re-sampling methods and therefore can have different performances and generate different outputs.  
	4.2.1 Bagging Algorithm 
	Bagging is a method for generating multiple versions of predictor and using these to get an aggregated predictor (Breiman, 1996). The bagging algorithm could help reduce the overfitting problem from a single model. 
	Typically, there are 3 steps to use the tree-based bagging algorithm: The first step is to create several (e.g., 100) random sub-samples of the dataset with replacement. The second step is to train a model using each sample. Finally, given a new dataset, calculate the average prediction from each model (Breiman, 1996). 
	In detail, the pseudo-code for bagging introduced by Breiman (1996) is shown in Figure 4.2, which can make it easier to understand the idea of bagging algorithm. Given a training set D, in each iteration (ranging from 1 to T), randomly sample with replacement N samples from the training dataset. Then train a selected base model A (e.g., decision tree model) on samples. For each test example, start with all trained base models, and then predict by combining results of all T trained models. For the regression
	 
	Figure 4.2: Pseudo-code for Bagging  
	Source: Breiman (1996) 
	 
	Random Forest is a typical bagging-based model that was introduced by Breiman (2001), and it has been widely used in the machine learning area. Random Forest is a combination of many decision trees. There are two types of randomness built into the trees. First, each tree is built on a random sample from the training dataset. Second, a subset of features are randomly allocated to each tree node to generate the best split. 
	The main limitation of the Random Forest is that a larger number of trees may make the model run slower. If the data include categorical variables with a different number of levels, “Random Forests are biased in favor of those variables with more levels” (Strickland, 2007). 
	4.2.2 Boosting Algorithm 
	 
	The idea of boosting algorithm was first proposed by Kearns (1988). Boosting algorithm also refers to several algorithms that convert weak learners to strong learners. Several base models are combined together to form stronger model that can make generalizations (Rajsingh et al., 2018).  
	Different from the bagging method which has each base model run independently and then aggregates their outputs at the end without any preference, the boosting method improves the 
	prediction through developing multiple models in sequence by putting emphasis on these training cases that are difficult to estimate.  
	In detail, the initial model in boosting is predicted using a loss function. Each time a decision tree is generated, the model is updated based on the previous model and loss function resulting in a final model. The samples have an unequal probability of appearing in subsequent models and ones with the highest error appear most, which means that the incorrectly estimated or misclassified samples have more chances to be selected.  
	There are many boosting algorithms such as AdaBoost, Gradient boosting, and XGBoost. Gradient boosting is a typical boosting approach, and it has been widely used in the machine learning area. The word ‘gradient’ means that it uses a gradient descent algorithm to minimize the loss when adding new models (Friedman, 2001). The gradient boosting approach supports both classification and regression predictive modeling problems. 
	Based on previous studies, the gradient boosting model generally gives better results than Random Forest, since Random Forest has fewer parameters needing tuning and also is less sensitive to these parameters (Ogutu et al., 2011; Freeman et al., 2015). However, the gradient boosting model is harder to fit than Random Forests at the same time. The stopping criteria should also be chosen carefully to avoid overfitting on the training data. 
	4.3 XGBoost Algorithm 
	XGBoost is the short name for ‘Extreme gradient boosting’ that was proposed by Chen and Guestrin (2016). In recent years, it has a recognized impact in solving machine learning challenges in different application domains.  
	The speed of XGBoost is much faster than that of other common machine learning methods since it can process large amounts of data in a parallel way efficiently. The XGBoost model can also handle missing values in the dataset. Above all, “XGBoost used a more regularized model formalization to control over-fitting, which gives it better performance” (Chen and Guestrin, 2016). Therefore, the XGBoost model is selected and used to conduct travel time prediction in this study. The detailed information about the X
	The objective function (Obj(Θ)) of the XGBoost model is provided below (Chen and Guestrin, 2016):  𝑂𝑏𝑗(Θ)=𝐿(Θ)+Ω(Θ) 
	where,  
	𝐿(Θ) = The training loss, which measures how well the model fit on training data 
	Ω(Θ) = The regularization term, which measures the complexity of the model. 
	The loss on training data can be expressed as:  
	𝐿=∑𝑙(𝑦𝑖,𝑦̂𝑖)𝑛𝑖=1 
	In detail, the square loss for the regression problem can be expressed as:  𝑙(𝑦𝑖,𝑦̂𝑖)=(𝑦𝑖−𝑦̂𝑖)2 
	The logistic loss for the classification problem can be expressed as: 𝑙(𝑦𝑖,𝑦̂𝑖)=𝑦𝑖ln(1+𝑒−𝑦̂𝑖)+(1−𝑦𝑖)𝑙𝑛(1+𝑒𝑦̂𝑖) 
	In this study, 
	𝑦̂𝑖 = the predicted travel time. 
	𝑦𝑖 = the actual travel time. 
	When a new tree is added to the model, the objective function can be transformed to: 𝑂𝑏𝑗(t)=∑𝑙(𝑦𝑖,𝑦̂𝑖(𝑡))𝑛𝑖=1+∑Ω(𝑓𝑖)𝑡𝑖=1=∑𝑙(𝑦𝑖,𝑦̂𝑖(𝑡−1)+𝑓𝑡(𝑥𝑖))+Ω(𝑓𝑡)+𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑛𝑖=1 
	In order to get the simplest goal, the constant term should be removed from the function. The process of XGBoost uses second order Taylor expansion to extend the loss function and removes the constant term (Chen and Guestrin, 2016). 𝑂𝑏𝑗(t)=∑𝑙(𝑦𝑖,𝑦̂𝑖(𝑡−1)+𝑔𝑖𝑓𝑡(𝑥𝑖)+12ℎ𝑖𝑓𝑡2(𝑥𝑖))+Ω(𝑓𝑡)𝑛𝑖=1 
	where, 
	𝑔𝑖=𝜕𝑦̂𝑖(𝑡−1)𝑙(𝑦𝑖,𝑦̂𝑖(𝑡−1)) , which means the first order partial derivative of the function 
	ℎ𝑖=𝜕𝑦̂𝑖(𝑡−1)2𝑙(𝑦𝑖,𝑦̂𝑖(𝑡−1)) , which means the second order partial derivative of the function 
	After the removal of all the constants, the specific objective at step 𝑡 becomes: 𝑂𝑏𝑗(t)=∑[𝑔𝑖𝑓𝑡(𝑥𝑖)+12ℎ𝑖𝑓𝑡2(𝑥𝑖)]+Ω(𝑓𝑡)𝑛𝑖=1 
	 
	In the XGBoost model, the complexity is defined as (Chen and Guestrin, 2016): 
	Ω(𝑓)=𝛾𝑇+12𝜆∑𝑤𝑗2𝑇𝑗=1 
	where, 
	T = the number of leaf nodes 
	𝛾 = the penalty coefficient of the number of leaves 
	𝜆 = the penalty coefficient of regularization 
	𝑤𝑗= the score of leaf 𝑗 
	After re-formulating the tree model, the objective function with the t-th tree can be written as: 𝑂𝑏𝑗(t)=∑[𝑔𝑖𝑤𝑞(𝑥𝑖)+12ℎ𝑖𝑤𝑞(𝑥𝑖)2]+𝛾𝑇+12𝜆∑𝑤𝑗2𝑇𝑗=1𝑛𝑖=1 𝑂𝑏𝑗(t)=∑[(∑𝑔𝑖)𝑤𝑗𝑖∈𝐼𝑗+12(∑ℎ𝑖+𝜆)𝑤𝑗2]+𝑖∈𝐼𝑗𝑇𝑗=1𝛾𝑇 
	where 𝐼𝑗={𝑖|𝑞(𝑥𝑖)=𝑗} is an instance set assigned to the j-th leaf. The objective function could be further compressed as: 𝑂𝑏𝑗(t)=∑[𝐺𝑗𝑤𝑗+12(𝐻𝑗+𝜆)𝑤𝑗2]+𝑇𝑗=1𝛾𝑇 
	where 𝐺𝑗=∑𝑔𝑖𝑖∈𝐼𝑗, 𝐻𝑗=∑ℎ𝑖𝑖∈𝐼𝑗 
	The best 𝑤𝑗 one can get for the objective function is: 𝑤𝑗∗=−𝐺𝑗𝐻𝑗+𝜆 
	Therefore, the final objective function can be written as: 𝑂𝑏𝑗(t)=−12∑𝐺𝑗2𝐻𝑗+𝜆+𝑇𝑗=1𝛾𝑇 
	The smaller the score is, the better the structure is. 
	XGBoost can also add branches for each leaf node. The loss reduction after the split can be expressed as: 
	𝐺𝑎𝑖𝑛= 12[𝐺𝐿2𝐻𝐿+𝜆+𝐺𝑅2𝐻𝑅+𝜆−(𝐺𝐿+𝐺𝑅)2𝐻𝐿+𝐻𝑅+𝜆]−𝛾 
	where 𝐺𝐿2𝐻𝐿+𝜆 is the score of the left node after the cut. 𝐺𝑅2𝐻𝑅+𝜆 is the score of the right node after the cut. (𝐺𝐿+𝐺𝑅)2𝐻𝐿+𝐻𝑅+𝜆 is the score of combination without the cut. Finally, the best structure of the model can be obtained which can minimize the objective function by enumerating different kinds of tree structures. 
	4.4 Summary 
	This chapter presents the methodology which will be used in travel time prediction. The idea of ensemble learning is introduced first. The detailed information on the decision tree algorithm, bagging algorithm, and boosting algorithm is then presented. The basic information about the Random Forest model and the gradient boosting model is also introduced. The advantages and disadvantages of each model are discussed. The basic information about the XGBoost model is also presented in this chapter. The advantag
	  
	 
	Chapter 5.  Travel Time Prediction Model Validation
	Chapter 5.  Travel Time Prediction Model Validation
	 

	5.1 Introduction 
	This chapter presents the validation of the proposed machine learning model based on the data described in Chapter 3. Section 5.2 shows the feature selection and pre-processing steps, and the features will include, but are not limited to: time of day, day of the week, month, weather conditions, and segment characteristics. Section 5.3 introduces the parameters in the model and discusses the parameters’ tuning process. Finally, section 5.4 concludes the chapter with a summary. 
	5.2 Feature Selection and Pre-processing 
	Determining which feature to use in the model is the most important factor of a successful machine learning algorithm (Domingos, 2012). The definition of feature engineering is “an act of extracting features from raw data and transforming them into the formats that are suitable for the machine learning model” (Zheng and Casari, 2018). Therefore, the quality of the features will have great influence on whether the travel time prediction model is good or not. 
	The real-world travel time data provided by the RITIS website (which was mentioned in chapter 3) are used for this study. The quality of the data is precise enough with less than a 0.5% missing rate (4348 out of 906048). Therefore, this study simply replaces the missing values with the mean of its closest surrounding values. 
	Based on previous studies (Min and Wynter, 2011; Wang et al., 2018), the features that influence the accuracy of travel time prediction may not only include the basic features (such as time of day, day of the week, month, and weather), but also include the spatial and temporal characteristics of the segments. Therefore, the travel time information from several steps before and the travel time information on adjacent segments are also selected and will be used in the model. 
	Table 5.1 summarizes the basic information on the features used in this study and Table 5.2 is an example of the dataset. In Table 5.2, the first 19 columns are the input variables that are used to predict travel time at time step t and the last column is the travel time. In some cases, the target variable will be transformed when it is not normally distributed, however, “since regression tree is the basic learner of XGBoost, there is no need to normalize samples, which means that features from different un
	For the Categorical Variable, the most commonly used method is 
	For the Categorical Variable, the most commonly used method is 
	One-hot encoding
	One-hot encoding

	 in the Python software. One-hot encoding is a process by which categorical variables are converted into a form that could be provided to machine learning algorithms to do a better job in prediction. For example, the category weekdays with 7 variables will be transferred as dummy variables. It should be noticed that if the range of category variable is too large (over hundreds of variables), this method is not suitable anymore.  

	 
	Table 5.1: Definitions and Attributes on Selected Features 
	Variable 
	Variable 
	Variable 
	Variable 

	Definition 
	Definition 

	Attribute 
	Attribute 

	Span

	ID 
	ID 
	ID 

	Segment ID 
	Segment ID 

	Categorical 
	Categorical 

	Span

	L 
	L 
	L 

	Length of the segment 
	Length of the segment 

	Categorical 
	Categorical 

	Span

	TOD 
	TOD 
	TOD 

	The TOD is represented by every 15-minute timestep indexed from 1 to 96 
	The TOD is represented by every 15-minute timestep indexed from 1 to 96 

	Categorical 
	Categorical 

	Span

	DOW 
	DOW 
	DOW 

	The DOW is indexed from 1 to 7 to represent from Monday through Sunday 
	The DOW is indexed from 1 to 7 to represent from Monday through Sunday 

	Categorical 
	Categorical 

	Span

	Month  
	Month  
	Month  

	The Month is indexed from 1 to 12 to represent January to December 
	The Month is indexed from 1 to 12 to represent January to December 

	Categorical 
	Categorical 

	Span

	Weather 
	Weather 
	Weather 

	Weather is indexed from 1 to 3 to represent normal, rain and snow/ice/fog, respectively 
	Weather is indexed from 1 to 3 to represent normal, rain and snow/ice/fog, respectively 

	Categorical 
	Categorical 

	Span

	𝑇𝑡−1 
	𝑇𝑡−1 
	𝑇𝑡−1 

	Travel time at time step t-1 (15 minutes before) 
	Travel time at time step t-1 (15 minutes before) 

	Float 
	Float 

	Span

	𝑇𝑡−2 
	𝑇𝑡−2 
	𝑇𝑡−2 

	Travel time at time step t-2 (30  minutes before) 
	Travel time at time step t-2 (30  minutes before) 

	Float 
	Float 

	Span

	𝑇𝑡−3 
	𝑇𝑡−3 
	𝑇𝑡−3 

	Travel time at time step t-3 (45 minutes before) 
	Travel time at time step t-3 (45 minutes before) 

	Float 
	Float 

	Span

	∆𝑇𝑡−1 
	∆𝑇𝑡−1 
	∆𝑇𝑡−1 

	Travel time change value at time step t-1 (15 minutes before) 
	Travel time change value at time step t-1 (15 minutes before) 

	Float 
	Float 

	Span

	∆𝑇𝑡−2 
	∆𝑇𝑡−2 
	∆𝑇𝑡−2 

	Travel time change value at time step t-2 (30 minutes before) 
	Travel time change value at time step t-2 (30 minutes before) 

	Float 
	Float 

	Span

	∆𝑇𝑡−3 
	∆𝑇𝑡−3 
	∆𝑇𝑡−3 

	Travel time change value at time step t-3 (45 minutes before) 
	Travel time change value at time step t-3 (45 minutes before) 

	Float 
	Float 

	Span

	𝑇𝑡−1𝑖−1 
	𝑇𝑡−1𝑖−1 
	𝑇𝑡−1𝑖−1 

	Travel time of first upstream segment at time step t-1 (15 minutes before) 
	Travel time of first upstream segment at time step t-1 (15 minutes before) 

	Float 
	Float 

	Span

	𝑇𝑡−1𝑖−2 
	𝑇𝑡−1𝑖−2 
	𝑇𝑡−1𝑖−2 

	Travel time of second upstream segment at time step t-1 (15 minutes before) 
	Travel time of second upstream segment at time step t-1 (15 minutes before) 

	Float 
	Float 

	Span

	∆𝑇𝑡−1𝑖−1 
	∆𝑇𝑡−1𝑖−1 
	∆𝑇𝑡−1𝑖−1 

	Travel time change value of first upstream segment at time step t-1 (15 minutes before) 
	Travel time change value of first upstream segment at time step t-1 (15 minutes before) 

	Float 
	Float 

	Span

	∆𝑇𝑡−1𝑖−2 
	∆𝑇𝑡−1𝑖−2 
	∆𝑇𝑡−1𝑖−2 

	Travel time change value of second upstream segment at time step t-1 (15 minutes before) 
	Travel time change value of second upstream segment at time step t-1 (15 minutes before) 

	Float 
	Float 

	Span

	𝑇𝑡−1𝑖+1 
	𝑇𝑡−1𝑖+1 
	𝑇𝑡−1𝑖+1 

	Travel time of first downstream segment at time step t-1 (15 minutes before) 
	Travel time of first downstream segment at time step t-1 (15 minutes before) 

	Float 
	Float 

	Span

	𝑇𝑡−1𝑖+2 
	𝑇𝑡−1𝑖+2 
	𝑇𝑡−1𝑖+2 

	Travel time of second downstream segment at time step t-1 (15 minutes before) 
	Travel time of second downstream segment at time step t-1 (15 minutes before) 

	Float 
	Float 

	Span

	∆𝑇𝑡−1𝑖+1 
	∆𝑇𝑡−1𝑖+1 
	∆𝑇𝑡−1𝑖+1 

	Travel time change value of first downstream segment at time step t-1 (15 minutes before) 
	Travel time change value of first downstream segment at time step t-1 (15 minutes before) 

	Float 
	Float 

	Span

	∆𝑇𝑡−1𝑖+1 
	∆𝑇𝑡−1𝑖+1 
	∆𝑇𝑡−1𝑖+1 

	Travel time change value of second downstream segment at time step t-1 (15 minutes before) 
	Travel time change value of second downstream segment at time step t-1 (15 minutes before) 

	Float 
	Float 

	Span

	𝑇𝑡 
	𝑇𝑡 
	𝑇𝑡 

	Travel time at time step t 
	Travel time at time step t 

	Float 
	Float 

	Span


	Table 5.2: Example of the Raw Inputs of the Model 
	ID 
	ID 
	ID 
	ID 

	Weather 
	Weather 

	TOD 
	TOD 

	DOW 
	DOW 

	Month 
	Month 

	L 
	L 

	𝑇𝑡−1 
	𝑇𝑡−1 

	𝑇𝑡−2 
	𝑇𝑡−2 

	𝑇𝑡−3 
	𝑇𝑡−3 

	... 
	... 

	∆𝑇𝑡−3 
	∆𝑇𝑡−3 

	𝑇𝑡−1𝑖−1 
	𝑇𝑡−1𝑖−1 

	𝑇𝑡−1𝑖−2 
	𝑇𝑡−1𝑖−2 

	∆𝑇𝑡−1𝑖−1 
	∆𝑇𝑡−1𝑖−1 

	∆𝑇𝑡−1𝑖−2 
	∆𝑇𝑡−1𝑖−2 

	𝑇𝑡−1𝑖+1 
	𝑇𝑡−1𝑖+1 

	𝑇𝑡−1𝑖+2 
	𝑇𝑡−1𝑖+2 

	∆𝑇𝑡−1𝑖+1 
	∆𝑇𝑡−1𝑖+1 

	∆𝑇𝑡−1𝑖+1 
	∆𝑇𝑡−1𝑖+1 

	𝑇𝑡 
	𝑇𝑡 

	Span

	125-04790 
	125-04790 
	125-04790 

	normal 
	normal 

	21 
	21 

	Friday 
	Friday 

	1 
	1 

	2.245989 
	2.245989 

	121.91 
	121.91 

	121.54 
	121.54 

	127.10 
	127.10 

	... 
	... 

	-8.19 
	-8.19 

	33.87 
	33.87 

	29.47 
	29.47 

	-0.31 
	-0.31 

	-0.39 
	-0.39 

	30.63 
	30.63 

	91.23 
	91.23 

	-0.21 
	-0.21 

	1.24 
	1.24 

	116.28 
	116.28 

	Span

	125-04790 
	125-04790 
	125-04790 

	normal 
	normal 

	22 
	22 

	Friday 
	Friday 

	1 
	1 

	2.245989 
	2.245989 

	116.28 
	116.28 

	121.91 
	121.91 

	121.54 
	121.54 

	... 
	... 

	5.56 
	5.56 

	34.70 
	34.70 

	30.88 
	30.88 

	-0.83 
	-0.83 

	-1.41 
	-1.41 

	29.41 
	29.41 

	90.87 
	90.87 

	1.22 
	1.22 

	0.36 
	0.36 

	117.98 
	117.98 


	125-04790 
	125-04790 
	125-04790 

	normal 
	normal 

	23 
	23 

	Friday 
	Friday 

	1 
	1 

	2.245989 
	2.245989 

	117.98 
	117.98 

	116.28 
	116.28 

	121.91 
	121.91 

	... 
	... 

	-0.37 
	-0.37 

	34.35 
	34.35 

	30.12 
	30.12 

	0.35 
	0.35 

	0.76 
	0.76 

	28.75 
	28.75 

	86.16 
	86.16 

	0.66 
	0.66 

	4.71 
	4.71 

	113.31 
	113.31 


	125-04790 
	125-04790 
	125-04790 

	normal 
	normal 

	24 
	24 

	Friday 
	Friday 

	1 
	1 

	2.245989 
	2.245989 

	113.31 
	113.31 

	117.98 
	117.98 

	116.28 
	116.28 

	... 
	... 

	5.63 
	5.63 

	31.54 
	31.54 

	27.34 
	27.34 

	2.81 
	2.81 

	2.78 
	2.78 

	27.71 
	27.71 

	83.33 
	83.33 

	1.04 
	1.04 

	2.83 
	2.83 

	111.28 
	111.28 


	125-04790 
	125-04790 
	125-04790 

	normal 
	normal 

	25 
	25 

	Friday 
	Friday 

	1 
	1 

	2.245989 
	2.245989 

	111.28 
	111.28 

	113.31 
	113.31 

	117.98 
	117.98 

	... 
	... 

	-1.70 
	-1.70 

	31.33 
	31.33 

	26.36 
	26.36 

	0.21 
	0.21 

	0.98 
	0.98 

	27.50 
	27.50 

	82.45 
	82.45 

	0.21 
	0.21 

	0.88 
	0.88 

	108.89 
	108.89 


	125-04790 
	125-04790 
	125-04790 

	normal 
	normal 

	26 
	26 

	Friday 
	Friday 

	1 
	1 

	2.245989 
	2.245989 

	108.89 
	108.89 

	111.28 
	111.28 

	113.31 
	113.31 

	... 
	... 

	4.67 
	4.67 

	30.58 
	30.58 

	26.38 
	26.38 

	0.75 
	0.75 

	-0.02 
	-0.02 

	27.20 
	27.20 

	83.74 
	83.74 

	0.30 
	0.30 

	-1.29 
	-1.29 

	118.92 
	118.92 

	Span


	5.3 Parameter Tuning Process 
	In the XGBoost model, there are many parameters that should be considered. There are three types of parameters: general parameters, booster parameters and task parameters. 
	General parameters are related to which booster is being used to do boosting, commonly in the tree or linear models. In detail, the general parameters include: 
	 Booster: Select the type of model to run at each iteration. It has 2 options: tree-based models and linear models. The default value of booster is ‘gbtree’. 
	 Booster: Select the type of model to run at each iteration. It has 2 options: tree-based models and linear models. The default value of booster is ‘gbtree’. 
	 Booster: Select the type of model to run at each iteration. It has 2 options: tree-based models and linear models. The default value of booster is ‘gbtree’. 

	 Silent: Silent controls whether to print message. If the value is set to 1, no running messages will be printed. The default value of silent is 0. It is generally good to keep it as 0 since the messages might help in understanding the model. 
	 Silent: Silent controls whether to print message. If the value is set to 1, no running messages will be printed. The default value of silent is 0. It is generally good to keep it as 0 since the messages might help in understanding the model. 

	 Nthread: This parameter is used for controlling the parallel processing and the number of cores in the system that would be used. The default value is the maximum number of threads available on the computer. The algorithm will detect it automatically. 
	 Nthread: This parameter is used for controlling the parallel processing and the number of cores in the system that would be used. The default value is the maximum number of threads available on the computer. The algorithm will detect it automatically. 


	Booster parameters depend on which booster one has chosen. For the tree booster in this study, the parameters include: 
	 Learning rate: Learning rate is the rate at which the model learns patterns in data. After every round, it shrinks the feature weights to reach the best optimum. Lower learning rate leads to slower computation. The default value is 0.3. 
	 Learning rate: Learning rate is the rate at which the model learns patterns in data. After every round, it shrinks the feature weights to reach the best optimum. Lower learning rate leads to slower computation. The default value is 0.3. 
	 Learning rate: Learning rate is the rate at which the model learns patterns in data. After every round, it shrinks the feature weights to reach the best optimum. Lower learning rate leads to slower computation. The default value is 0.3. 

	 Gamma: Gamma controls regularization (or prevents overfitting). The optimal value of gamma depends on the data set and other parameter values. The larger the gamma is, the more conservative the algorithm will be. The value of Gamma usually is 0. The default value is 0. 
	 Gamma: Gamma controls regularization (or prevents overfitting). The optimal value of gamma depends on the data set and other parameter values. The larger the gamma is, the more conservative the algorithm will be. The value of Gamma usually is 0. The default value is 0. 

	 Max_depth: Maximum depth controls the depth of the tree. The larger the depth, the more complex the model, and the higher the chance of overfitting. There is no standard value for max_depth. Larger dataset requires deeper tree to learn the rules from data. The value of Max_depth usually ranges from 3 to 10. The default value is 6. 
	 Max_depth: Maximum depth controls the depth of the tree. The larger the depth, the more complex the model, and the higher the chance of overfitting. There is no standard value for max_depth. Larger dataset requires deeper tree to learn the rules from data. The value of Max_depth usually ranges from 3 to 10. The default value is 6. 

	 Min_child_weight: Minimum child weight refers to the minimum number of instances required in a child node. It blocks the potential feature interactions to prevent overfitting. The default value is 1. 
	 Min_child_weight: Minimum child weight refers to the minimum number of instances required in a child node. It blocks the potential feature interactions to prevent overfitting. The default value is 1. 


	 Subsample: Percentage of samples used per tree. This parameter will also help to prevent overfitting. The value of subsample usually ranges from 0.5 to 1. The default value is 1. 
	 Subsample: Percentage of samples used per tree. This parameter will also help to prevent overfitting. The value of subsample usually ranges from 0.5 to 1. The default value is 1. 
	 Subsample: Percentage of samples used per tree. This parameter will also help to prevent overfitting. The value of subsample usually ranges from 0.5 to 1. The default value is 1. 

	 Colsample_bytree: Percentage of features used per tree. A high value can lead to overfitting. The value of colsample_bytree usually ranges from 0.5 to 1. The default value is 1. 
	 Colsample_bytree: Percentage of features used per tree. A high value can lead to overfitting. The value of colsample_bytree usually ranges from 0.5 to 1. The default value is 1. 

	 Lambda: This parameter can help to handle the regularization part of the XGBoost model. Usually, the value of Lambda is 1 and the default value is 1. 
	 Lambda: This parameter can help to handle the regularization part of the XGBoost model. Usually, the value of Lambda is 1 and the default value is 1. 

	 Alpha: This parameter can also help to handle the regularization part of the XGBoost model. The value of Alpha usually is 0 and the default value is 0. 
	 Alpha: This parameter can also help to handle the regularization part of the XGBoost model. The value of Alpha usually is 0 and the default value is 0. 

	 N_estimators: This parameter refers to the number of trees one wants to build in the model. The number is up to the complexity of the model. 
	 N_estimators: This parameter refers to the number of trees one wants to build in the model. The number is up to the complexity of the model. 


	Task parameters depend on the learning scenario. For example, regression tasks may use different parameters with ranking tasks. The task parameters include: 
	 Objective: This parameter defines the task of learning (the loss function to be minimized). The mostly used values are ‘reg:linear’, ‘binary:logistic’,  ‘multi:softmax’ and ‘multi:softprob’. The default value is ‘reg:linear’. 
	 Objective: This parameter defines the task of learning (the loss function to be minimized). The mostly used values are ‘reg:linear’, ‘binary:logistic’,  ‘multi:softmax’ and ‘multi:softprob’. The default value is ‘reg:linear’. 
	 Objective: This parameter defines the task of learning (the loss function to be minimized). The mostly used values are ‘reg:linear’, ‘binary:logistic’,  ‘multi:softmax’ and ‘multi:softprob’. The default value is ‘reg:linear’. 


	In order to optimize the modelling result, it is necessary to explore the effect of different combinations of parameters on the model performance. Based on previous studies (Zhang and Haghani, 2015; Dong et al. 2018), the parameters that could be optimized include, but are not limited to: N_estimators (number of trees), learning rate, and Max_depth (maximum depth of the tree). Therefore, these parameters are considered to be optimized in this study. 
	There are several optimization methods considered in previous studies and the grid search method is the most widely used one. Therefore, the grid search method is selected as the optimization method with the consideration of time-efficiency. In this study, 80% of the traffic data is used as training data and 20% of the data is used as the testing data. The XGBoost model is fitted with a different number of trees (N_estimators ranges from 1 to 500), maximum depth (Max_depth ranges from 5 to 10) and learning 
	Figure 5.1 to Figure 5.6 below show the effects of different selected variables on the prediction results. Table 5.3 below presents the detailed prediction results including the prediction results at each step, computation time, and optimized results. The mean absolute error (MAE) is used to evaluate the performance of the model.  
	The equation of the MAE is provided below: 
	𝑀𝐴𝐸=1𝑚∑|𝑦𝑖−𝑦𝑖̂|𝑚𝑖=1 
	where,  
	 
	𝑚 = The total number of the data. 
	𝑦𝑖 = The actual travel time value in the test dataset of record 𝑖. 
	𝑦𝑖̂= The predicted travel time value in the test dataset of record 𝑖. 
	 
	 
	Figure 5.1: XGBoost Travel Time Prediction Model Outputs with the Max_depth =5  
	 
	 
	Figure 5.2: XGBoost Travel Time Prediction Model Outputs with the Max_depth=6  
	 
	 
	Figure 5.3: XGBoost Travel Time Prediction Model Outputs with the Max_depth=7  
	 
	 
	Figure 5.4: XGBoost Travel Time Prediction Model Outputs with the Max_depth=8  
	 
	Figure 5.5: XGBoost Travel Time Prediction Model Outputs with the Max_depth=9  
	 
	 
	Figure 5.6: XGBoost Travel Time Prediction Model Outputs with the Max_depth=10  
	 
	Based on Figure 5.1 to Figure 5.6 above, it can be concluded that the MAE value decreases as the number of trees increases, and the slopes of different learning rates are also different. In general, the lower the learning rate is, the higher the initial MAE value (with the number of trees = 1) will be. For example, when the learning rate equals to 0.1, the initial MAE value is about 36.2. In comparison, the figures show that the MAE values are about 17.6 when the number of trees is 1 and the learning rate i
	Based on the figures above, when the number of trees reaches 50, the value of MAE becomes nearly the same. However, the data in Table 5.3 indicate that the results can still be optimized a little bit if the number of trees keeps increasing. Overfitting is a general problem of traditional ensemble learning methods. For example, the prediction error usually increases when the number of trees increases after it reaches the optimized point in the gradient boosting model (Zhang and Haghani, 2015). In the XGBoost
	It could be seen that the parameter max_depth does not influence the prediction results significantly since the trends of the errors are nearly the same. However, the data in Table 5.3 shows that as the max_depth increases, the MAE decreases a little bit (the optimized MAEs of  max_depth from 5 to 10 are 2.02, 1.98, 1.95, 1.93, 1.91, 1.90, respectively). The data in Table 5.4 shows that as the max_depth increases, the average computation time of the model also decreases a lot, which means the larger value o
	  
	Table 5.3: MAEs of Different Learning Rates, Number of Trees and Max_depth 
	Table
	TR
	TH
	Span
	Learning rate 

	TH
	Span
	MAE 

	Span

	Max_depth=5 
	Max_depth=5 
	Max_depth=5 

	Span

	 
	 
	 

	Number of trees 
	Number of trees 

	Span

	 
	 
	 

	1 
	1 

	3 
	3 

	5 
	5 

	10 
	10 

	20 
	20 

	50 
	50 

	100 
	100 

	500 
	500 

	Span

	0.1 
	0.1 
	0.1 

	31.6232 
	31.6232 

	25.6101 
	25.6101 

	20.7441 
	20.7441 

	12.3545 
	12.3545 

	4.86309 
	4.86309 

	2.1066 
	2.1066 

	2.08573 
	2.08573 

	2.01681 
	2.01681 

	Span

	0.2 
	0.2 
	0.2 

	28.105 
	28.105 

	17.9992 
	17.9992 

	11.6453 
	11.6453 

	4.43742 
	4.43742 

	2.16435 
	2.16435 

	2.11039 
	2.11039 

	2.08105 
	2.08105 

	2.03219 
	2.03219 

	Span

	0.3 
	0.3 
	0.3 

	24.5887 
	24.5887 

	12.1685 
	12.1685 

	6.37425 
	6.37425 

	2.36127 
	2.36127 

	2.14303 
	2.14303 

	2.11073 
	2.11073 

	2.09237 
	2.09237 

	2.05376 
	2.05376 

	Span

	0.4 
	0.4 
	0.4 

	21.0772 
	21.0772 

	7.91567 
	7.91567 

	3.5855 
	3.5855 

	2.19242 
	2.19242 

	2.1688 
	2.1688 

	2.13987 
	2.13987 

	2.11298 
	2.11298 

	TD
	Span
	NA 

	Span

	0.5 
	0.5 
	0.5 

	17.5817 
	17.5817 

	5.01915 
	5.01915 

	2.47101 
	2.47101 

	2.22655 
	2.22655 

	2.20399 
	2.20399 

	2.16189 
	2.16189 

	2.13814 
	2.13814 

	TD
	Span
	NA 

	Span

	Max_depth=6 
	Max_depth=6 
	Max_depth=6 

	Span

	 
	 
	 

	Number of trees 
	Number of trees 

	Span

	 
	 
	 

	1 
	1 

	3 
	3 

	5 
	5 

	10 
	10 

	20 
	20 

	50 
	50 

	100 
	100 

	500 
	500 

	Span

	0.1 
	0.1 
	0.1 

	31.6239 
	31.6239 

	25.6113 
	25.6113 

	20.7459 
	20.7459 

	12.352 
	12.352 

	4.84463 
	4.84463 

	2.05099 
	2.05099 

	2.03103 
	2.03103 

	1.97875 
	1.97875 

	Span

	0.2 
	0.2 
	0.2 

	28.1064 
	28.1064 

	17.9985 
	17.9985 

	11.6379 
	11.6379 

	4.42059 
	4.42059 

	2.09807 
	2.09807 

	2.05496 
	2.05496 

	2.02066 
	2.02066 

	1.98881 
	1.98881 

	Span

	0.3 
	0.3 
	0.3 

	24.5905 
	24.5905 

	12.1655 
	12.1655 

	6.35543 
	6.35543 

	2.32393 
	2.32393 

	2.09369 
	2.09369 

	2.06605 
	2.06605 

	2.04824 
	2.04824 

	2.02001 
	2.02001 

	Span

	0.4 
	0.4 
	0.4 

	21.0791 
	21.0791 

	7.9191 
	7.9191 

	3.55346 
	3.55346 

	2.12642 
	2.12642 

	2.11301 
	2.11301 

	2.08441 
	2.08441 

	2.06326 
	2.06326 

	TD
	Span
	NA 

	Span

	0.5 
	0.5 
	0.5 

	17.5816 
	17.5816 

	5.01106 
	5.01106 

	2.4425 
	2.4425 

	2.16502 
	2.16502 

	2.14012 
	2.14012 

	2.11357 
	2.11357 

	2.11321 
	2.11321 

	TD
	Span
	NA 

	Span

	Max_depth=7 
	Max_depth=7 
	Max_depth=7 

	Span

	 
	 
	 

	Number of trees 
	Number of trees 

	Span

	 
	 
	 

	1 
	1 

	3 
	3 

	5 
	5 

	10 
	10 

	20 
	20 

	50 
	50 

	100 
	100 

	500 
	500 

	Span

	0.1 
	0.1 
	0.1 

	31.6246 
	31.6246 

	25.6126 
	25.6126 

	20.7487 
	20.7487 

	12.3503 
	12.3503 

	4.83108 
	4.83108 

	2.01236 
	2.01236 

	1.9901 
	1.9901 

	1.95178 
	1.95178 

	Span

	0.2 
	0.2 
	0.2 

	28.1076 
	28.1076 

	18.0042 
	18.0042 

	11.6389 
	11.6389 

	4.40351 
	4.40351 

	2.0696 
	2.0696 

	2.01503 
	2.01503 

	1.997 
	1.997 

	1.97402 
	1.97402 

	Span

	0.3 
	0.3 
	0.3 

	24.5923 
	24.5923 

	12.1681 
	12.1681 

	6.33938 
	6.33938 

	2.29773 
	2.29773 

	2.05536 
	2.05536 

	2.02392 
	2.02392 

	2.01867 
	2.01867 

	2.00145 
	2.00145 

	Span

	0.4 
	0.4 
	0.4 

	21.0818 
	21.0818 

	7.90891 
	7.90891 

	3.52957 
	3.52957 

	2.07265 
	2.07265 

	2.06057 
	2.06057 

	2.04777 
	2.04777 

	2.0422 
	2.0422 

	TD
	Span
	NA 

	Span

	0.5 
	0.5 
	0.5 

	17.5864 
	17.5864 

	4.99475 
	4.99475 

	2.39171 
	2.39171 

	2.08885 
	2.08885 

	2.07452 
	2.07452 

	2.07155 
	2.07155 

	2.06401 
	2.06401 

	TD
	Span
	NA 

	Span

	Max_depth=8 
	Max_depth=8 
	Max_depth=8 

	Span

	 
	 
	 

	Number of trees 
	Number of trees 

	Span

	 
	 
	 

	1 
	1 

	3 
	3 

	5 
	5 

	10 
	10 

	20 
	20 

	50 
	50 

	100 
	100 

	500 
	500 

	Span

	0.1 
	0.1 
	0.1 

	31.6262 
	31.6262 

	25.6164 
	25.6164 

	20.7538 
	20.7538 

	12.3515 
	12.3515 

	4.82079 
	4.82079 

	1.98521 
	1.98521 

	1.96533 
	1.96533 

	1.92991 
	1.92991 

	Span

	0.2 
	0.2 
	0.2 

	28.1107 
	28.1107 

	18.0094 
	18.0094 

	11.6371 
	11.6371 

	4.38646 
	4.38646 

	2.04197 
	2.04197 

	1.984 
	1.984 

	1.968 
	1.968 

	1.94855 
	1.94855 

	Span

	0.3 
	0.3 
	0.3 

	24.5969 
	24.5969 

	12.1703 
	12.1703 

	6.33313 
	6.33313 

	2.28103 
	2.28103 

	2.01744 
	2.01744 

	1.99892 
	1.99892 

	1.99763 
	1.99763 

	TD
	Span
	NA 

	Span

	0.4 
	0.4 
	0.4 

	21.0879 
	21.0879 

	7.90641 
	7.90641 

	3.51711 
	3.51711 

	2.04708 
	2.04708 

	2.02954 
	2.02954 

	2.01933 
	2.01933 

	2.0176 
	2.0176 

	TD
	Span
	NA 

	Span

	0.5 
	0.5 
	0.5 

	17.5936 
	17.5936 

	4.9815 
	4.9815 

	2.36822 
	2.36822 

	2.07031 
	2.07031 

	2.05874 
	2.05874 

	2.06077 
	2.06077 

	TD
	Span
	NA 

	TD
	Span
	NA 

	Span

	Max_depth=9 
	Max_depth=9 
	Max_depth=9 

	Span

	 
	 
	 

	Number of trees 
	Number of trees 

	Span

	 
	 
	 

	1 
	1 

	3 
	3 

	5 
	5 

	10 
	10 

	20 
	20 

	50 
	50 

	100 
	100 

	500 
	500 

	Span

	0.1 
	0.1 
	0.1 

	31.6291 
	31.6291 

	25.6203 
	25.6203 

	20.7573 
	20.7573 

	12.3507 
	12.3507 

	4.80693 
	4.80693 

	1.96347 
	1.96347 

	1.94109 
	1.94109 

	1.91498 
	1.91498 

	Span

	0.2 
	0.2 
	0.2 

	28.1168 
	28.1168 

	18.0162 
	18.0162 

	11.6391 
	11.6391 

	4.3746 
	4.3746 

	2.01152 
	2.01152 

	1.95592 
	1.95592 

	1.94509 
	1.94509 

	1.93497 
	1.93497 

	Span

	0.3 
	0.3 
	0.3 

	24.606 
	24.606 

	12.1708 
	12.1708 

	6.32246 
	6.32246 

	2.25596 
	2.25596 

	1.99238 
	1.99238 

	1.97705 
	1.97705 

	1.97125 
	1.97125 

	TD
	Span
	NA 

	Span

	0.4 
	0.4 
	0.4 

	21.0991 
	21.0991 

	7.90241 
	7.90241 

	3.51192 
	3.51192 

	2.02939 
	2.02939 

	2.01599 
	2.01599 

	2.01326 
	2.01326 

	TD
	Span
	NA 

	TD
	Span
	NA 

	Span

	0.5 
	0.5 
	0.5 

	17.6059 
	17.6059 

	4.97653 
	4.97653 

	2.35518 
	2.35518 

	2.0485 
	2.0485 

	2.03841 
	2.03841 

	2.05002 
	2.05002 

	TD
	Span
	NA 

	TD
	Span
	NA 

	Span


	Table
	TR
	TH
	Span
	Learning rate 

	TH
	Span
	MAE 

	Span

	Max_depth=10 
	Max_depth=10 
	Max_depth=10 

	Span

	 
	 
	 

	Number of trees 
	Number of trees 

	Span

	 
	 
	 

	1 
	1 

	3 
	3 

	5 
	5 

	10 
	10 

	20 
	20 

	50 
	50 

	100 
	100 

	500 
	500 

	Span

	0.1 
	0.1 
	0.1 

	31.6307 
	31.6307 

	25.6248 
	25.6248 

	20.7631 
	20.7631 

	12.352 
	12.352 

	4.80107 
	4.80107 

	1.94157 
	1.94157 

	1.91908 
	1.91908 

	1.89544 
	1.89544 

	Span

	0.2 
	0.2 
	0.2 

	28.1198 
	28.1198 

	18.0198 
	18.0198 

	11.6369 
	11.6369 

	4.37085 
	4.37085 

	2.00348 
	2.00348 

	1.94777 
	1.94777 

	1.94338 
	1.94338 

	TD
	Span
	NA 

	Span

	0.3 
	0.3 
	0.3 

	24.6101 
	24.6101 

	12.1721 
	12.1721 

	6.31815 
	6.31815 

	2.24795 
	2.24795 

	1.98632 
	1.98632 

	1.97365 
	1.97365 

	1.97672 
	1.97672 

	TD
	Span
	NA 

	Span

	0.4 
	0.4 
	0.4 

	21.1044 
	21.1044 

	7.89797 
	7.89797 

	3.50731 
	3.50731 

	2.02597 
	2.02597 

	2.01108 
	2.01108 

	2.01454 
	2.01454 

	TD
	Span
	NA 

	TD
	Span
	NA 

	Span

	0.5 
	0.5 
	0.5 

	17.6118 
	17.6118 

	4.96814 
	4.96814 

	2.3521 
	2.3521 

	2.03704 
	2.03704 

	2.04147 
	2.04147 

	2.05903 
	2.05903 

	TD
	Span
	NA 

	TD
	Span
	NA 

	Span


	 
	Table 5.4: Optimized Prediction Results and Computation Times 
	Table
	TR
	TH
	Span
	Learning rate 

	TH
	Span
	Optimized Result (MAE) 

	TH
	Span
	Number of Iterations 

	TH
	Span
	Computation 
	Time 

	Span

	Max_depth =5 
	Max_depth =5 
	Max_depth =5 

	Span

	0.1 
	0.1 
	0.1 

	2.01681 
	2.01681 

	500 
	500 

	25 mins 
	25 mins 

	Span

	0.2 
	0.2 
	0.2 

	2.03219 
	2.03219 

	500 
	500 

	25 mins 
	25 mins 

	Span

	0.3 
	0.3 
	0.3 

	2.05376 
	2.05376 

	500 
	500 

	25 mins 
	25 mins 

	Span

	0.4 
	0.4 
	0.4 

	2.079 
	2.079 

	481 
	481 

	23 mins 
	23 mins 

	Span

	0.5 
	0.5 
	0.5 

	2.11782 
	2.11782 

	217 
	217 

	9 mins 
	9 mins 

	Span

	Max_depth =6 
	Max_depth =6 
	Max_depth =6 

	Span

	0.1 
	0.1 
	0.1 

	1.97875 
	1.97875 

	500 
	500 

	25 mins 
	25 mins 

	Span

	0.2 
	0.2 
	0.2 

	1.98881 
	1.98881 

	500 
	500 

	25 mins 
	25 mins 

	Span

	0.3 
	0.3 
	0.3 

	2.02001 
	2.02001 

	500 
	500 

	25 mins 
	25 mins 

	Span

	0.4 
	0.4 
	0.4 

	2.05099 
	2.05099 

	405 
	405 

	20 mins 
	20 mins 

	Span

	0.5 
	0.5 
	0.5 

	2.10818 
	2.10818 

	107 
	107 

	5 mins 
	5 mins 

	Span

	Max_depth =7 
	Max_depth =7 
	Max_depth =7 

	Span

	0.1 
	0.1 
	0.1 

	1.95178 
	1.95178 

	500 
	500 

	25 mins 
	25 mins 

	Span

	0.2 
	0.2 
	0.2 

	1.97402 
	1.97402 

	500 
	500 

	25 mins 
	25 mins 

	Span

	0.3 
	0.3 
	0.3 

	2.00145 
	2.00145 

	500 
	500 

	25 mins 
	25 mins 

	Span

	0.4 
	0.4 
	0.4 

	2.03456 
	2.03456 

	231 
	231 

	12 mins 
	12 mins 

	Span

	0.5 
	0.5 
	0.5 

	2.06401 
	2.06401 

	81 
	81 

	4 mins 
	4 mins 

	Span

	Max_depth =8 
	Max_depth =8 
	Max_depth =8 

	Span

	0.1 
	0.1 
	0.1 

	1.92991 
	1.92991 

	500 
	500 

	25 mins 
	25 mins 

	Span

	0.2 
	0.2 
	0.2 

	1.94855 
	1.94855 

	500 
	500 

	25 mins 
	25 mins 

	Span

	0.3 
	0.3 
	0.3 

	1.99435 
	1.99435 

	281 
	281 

	17 mins 
	17 mins 

	Span

	0.4 
	0.4 
	0.4 

	2.0176 
	2.0176 

	98 
	98 

	6 mins 
	6 mins 

	Span

	0.5 
	0.5 
	0.5 

	2.05619 
	2.05619 

	73 
	73 

	4 mins 
	4 mins 

	Span

	Max_depth =9 
	Max_depth =9 
	Max_depth =9 

	Span

	0.1 
	0.1 
	0.1 

	1.91498 
	1.91498 

	500 
	500 

	25 mins 
	25 mins 

	Span

	0.2 
	0.2 
	0.2 

	1.93497 
	1.93497 

	500 
	500 

	25 mins 
	25 mins 

	Span

	0.3 
	0.3 
	0.3 

	1.96895 
	1.96895 

	167 
	167 

	8 mins 
	8 mins 

	Span

	0.4 
	0.4 
	0.4 

	2.01224 
	2.01224 

	80 
	80 

	4 mins 
	4 mins 

	Span

	0.5 
	0.5 
	0.5 

	2.03841 
	2.03841 

	70 
	70 

	4 mins 
	4 mins 

	Span

	Max_depth =10 
	Max_depth =10 
	Max_depth =10 

	Span

	0.1 
	0.1 
	0.1 

	1.89544 
	1.89544 

	500 
	500 

	25 mins 
	25 mins 

	Span


	Table
	TR
	TH
	Span
	Learning rate 

	TH
	Span
	Optimized Result (MAE) 

	TH
	Span
	Number of Iterations 

	TH
	Span
	Computation 
	Time 

	Span

	0.2 
	0.2 
	0.2 

	1.93876 
	1.93876 

	352 
	352 

	18 mins 
	18 mins 

	Span

	0.3 
	0.3 
	0.3 

	1.97233 
	1.97233 

	156 
	156 

	8 mins 
	8 mins 

	Span

	0.4 
	0.4 
	0.4 

	2.00963 
	2.00963 

	74 
	74 

	4 mins 
	4 mins 

	Span

	0.8 
	0.8 
	0.8 

	2.03704 
	2.03704 

	60 
	60 

	4 mins 
	4 mins 

	Span


	 
	According to the experimental results, it can be concluded that:  
	The accuracy level of slower learning rate with a larger number of trees in the model is higher than that of a faster learning rate with a smaller number of trees. The number of trees needed to get optimized result for the model with faster learning rate is also lower than those with slower learning rates.  
	There is also a need to consider the tradeoff between prediction accuracy and computational time. Since a large number of trees is being fitted, model complexity also increases and requires more computational time. Therefore, the selection of the parameters such as max_depth and number of stopping round is important in the real world. 
	In addition, the maximum depth of the tree also affects the optimized selection. When the learning rates and number of trees are the same, a higher maximum depth of the tree leads to the lower error rates. A higher max_depth is also more efficient than a lower value since the number of iterations needed to achieve optimized results is lower. In general, a higher max_depth value means a more complex tree model and requires fewer trees to be fitted with a given learning rate. 
	 
	5.4 Summary 
	This chapter describes the validation process of the XGBoost-based travel time prediction model. The detailed information about the input features is presented. The parameters of the XGBoost model are also introduced. In order to achieve a better model performance, the parameter tuning process is discussed. The experimental results could give a clear picture of how the analyzed parameters impact the prediction performance.
	 
	Chapter 6.  Prediction Results Analysis
	Chapter 6.  Prediction Results Analysis
	 

	6.1 Introduction 
	This chapter presents the evaluation of the proposed XGBoost model based on the results described in Chapter 5. Section 6.2 presents the analysis of the optimized prediction results from XGBoost model. Section 6.3 presents the performance comparison between the XGBoost model and gradient boosting model. Finally, section 6.4 concludes this chapter with a summary. 
	6.2 Modelling Results Analysis 
	In machine learning area, the predictor variables, which are the features mentioned in Chapter 5, usually have significant impacts on the prediction results. Exploring the influence on the individual feature can help understand the data better. Higher relative importance indicates a stronger influence in predicting travel time. 
	Table 6.1 presents the relative importance of each feature in the optimized XGBoost model. Each predictor variable has a different impact on the predicted travel time. Based on the importance rank of each variable, it can be found that the variable 𝑇𝑡−1, which is the travel time at time step t-1 (15 minutes before), contributes the most to the predicted travel time. This result is expected and consistent with a previous study (Zhang and Haghani, 2015), which demonstrates that the immediate previous traffi
	The results in Table 6.1 show that time of day is the second ranked variable with the relative importance value of 34.85%, and this result is also expected. As mentioned by other studies, the travel time variability is also highly correlated with the time of day. The travel time usually increases a lot during peak hours and becomes stable during non-peak hours.  
	The third ranked variable is the segment ID with the relative importance value of 12.65%. The potential reason behind this ranking could be that the segment ID indicates which segment it is. The segment ID contains a lot of potential information such as the geographic location of the segment. Based on the travel time variability analysis results of other studies, different segment locations contribute to different travel time variability characteristics. Therefore, the segment ID is also a necessary and imp
	Day of week is the 4th ranked variable in the model; the relative importance value of day of week is 3.76%. The variable day of week is also important in the model since the travel time is highly correlated with which day of the week it is. Based on previous studies, the traffic congestion on weekends is less frequent than on weekdays (Chen et al., 2017, Chen et al., 2018). The travel time during peak hours on Friday is usually higher than those on other weekdays (Wang et al., 2017). Therefore, the variable
	week is important in the model; this result is consistent with a previous study (Zhang and Haghani, 2015). 
	Weather is also considered in the model with a relative importance value of 1.72%. Based on the results of other studies, inclement weather conditions may have a drastic impact on travel time variability. Therefore, the weather information is also useful in travel time prediction as adverse weather usually increases travel time. This finding is consistent with previous studies (Koesdwiady et al., 2016; Qiao et al., 2016). 
	The travel time at time step t-1 (15 minutes before) is not the only variable with the consideration of temporal correlation. Several variables such as the travel time of the two steps and three steps ahead (with the relative importance value of 0.40% and 0.33%, respectively) and the travel time change value of the three time steps ahead (with the relative importance value of 0.24%, 0.47% and 0.27%, respectively) are considered in the model. These variables are also used in the model of previous studies whi
	With the consideration of spatial impact, several variables such as the travel time of the two upstream segments (with the relative importance value of 0.29% and 0.40%, respectively) and the travel time of the two downstream segments (with the relative importance value of 0.26% and 0.60%, respectively) one time-step ahead are considered in the model. With respect to the travel time change value, the relative importance values of the two upstream segments are both 0.28%, and the relative importance values of
	Table 6.1: Relative Importance of Each Variable and Their Ranks in the Model 
	Table
	TR
	TH
	Span
	Variable 

	TH
	Span
	Relative Importance (%) 

	TH
	Span
	Rank 

	Span

	ID 
	ID 
	ID 

	12.65 
	12.65 

	3 
	3 

	Span

	L 
	L 
	L 

	0.24 
	0.24 

	19 
	19 

	Span

	TOD 
	TOD 
	TOD 

	34.85 
	34.85 

	2 
	2 

	Span

	DOW 
	DOW 
	DOW 

	3.76 
	3.76 

	4 
	4 

	Span

	Month 
	Month 
	Month 

	2.10 
	2.10 

	5 
	5 

	Span

	Weather 
	Weather 
	Weather 

	1.72 
	1.72 

	6 
	6 

	Span

	𝑇𝑡−1 
	𝑇𝑡−1 
	𝑇𝑡−1 

	38.87 
	38.87 

	1 
	1 

	Span


	Table
	TR
	TH
	Span
	Variable 

	TH
	Span
	Relative Importance (%) 

	TH
	Span
	Rank 

	Span

	𝑇𝑡−2 
	𝑇𝑡−2 
	𝑇𝑡−2 

	0.40 
	0.40 

	10 
	10 

	Span

	𝑇𝑡−3 
	𝑇𝑡−3 
	𝑇𝑡−3 

	0.33 
	0.33 

	13 
	13 

	Span

	∆𝑇𝑡−1 
	∆𝑇𝑡−1 
	∆𝑇𝑡−1 

	0.24 
	0.24 

	19 
	19 

	Span

	∆𝑇𝑡−2 
	∆𝑇𝑡−2 
	∆𝑇𝑡−2 

	0.47 
	0.47 

	9 
	9 

	Span

	∆𝑇𝑡−3 
	∆𝑇𝑡−3 
	∆𝑇𝑡−3 

	0.27 
	0.27 

	17 
	17 

	Span

	𝑇𝑡−1𝑖−1 
	𝑇𝑡−1𝑖−1 
	𝑇𝑡−1𝑖−1 

	0.29 
	0.29 

	14 
	14 

	Span

	𝑇𝑡−1𝑖−2 
	𝑇𝑡−1𝑖−2 
	𝑇𝑡−1𝑖−2 

	0.40 
	0.40 

	10 
	10 

	Span

	∆𝑇𝑡−1𝑖−1 
	∆𝑇𝑡−1𝑖−1 
	∆𝑇𝑡−1𝑖−1 

	0.28 
	0.28 

	15 
	15 

	Span

	∆𝑇𝑡−1𝑖−2 
	∆𝑇𝑡−1𝑖−2 
	∆𝑇𝑡−1𝑖−2 

	0.28 
	0.28 

	15 
	15 

	Span

	𝑇𝑡−1𝑖+1 
	𝑇𝑡−1𝑖+1 
	𝑇𝑡−1𝑖+1 

	0.26 
	0.26 

	18 
	18 

	Span

	𝑇𝑡−1𝑖+2 
	𝑇𝑡−1𝑖+2 
	𝑇𝑡−1𝑖+2 

	0.60 
	0.60 

	8 
	8 

	Span

	∆𝑇𝑡−1𝑖+1 
	∆𝑇𝑡−1𝑖+1 
	∆𝑇𝑡−1𝑖+1 

	0.36 
	0.36 

	12 
	12 

	Span

	∆𝑇𝑡−1𝑖+1 
	∆𝑇𝑡−1𝑖+1 
	∆𝑇𝑡−1𝑖+1 

	0.69 
	0.69 

	7 
	7 

	Span


	 
	 
	6.3 Model Comparison 
	In order to examine the accuracy and effectiveness of the XGBoost model, this section comprehensively evaluates the modeling results of the XGBoost model and compares the results with those of the gradient boosting model. The prediction result of the gradient boosting model is also optimized using a grid search method. For clarity, the mean absolute percentage error (MAPE) is used to evaluate and compare the performance of the two models.  
	The equation of the MAPE is provided below: 𝑀𝐴𝑃𝐸=100%𝑚∑|𝑦𝑖−𝑦𝑖̂𝑦𝑖|𝑚𝑖=1 
	where, 
	𝑚 = The total number of the data. 
	𝑦𝑖 = The actual travel time value in the test dataset of record 𝑖. 
	𝑦𝑖̂= The predicted travel time value in the test dataset of record 𝑖. 
	 Table 6.2 below presents the comparison between prediction results of the optimized XGBoost model and gradient boosting model. Based on the comparison, it could be concluded that the XGBoost model outperforms the gradient boosting model with both the consideration of accuracy and efficiency. The potential reason behind this could be as follows: 
	In general, the XGBoost model is a more regularized form of the gradient boosting model. XGBoost uses advanced regularization terms, which improve model generalization capabilities. Therefore, the prediction results of the XGBoost model is more accurate than those of the gradient boosting model. At the same time, the computation time of the XGBoost model (25 mins) is much faster than that of the gradient boosting model (2 hours). One important reason behind the better performance of the XGBoost model could 
	Another key reason is the XGBoost model implements the early stopping function, which means that one can stop model assessment when additional trees (see Chapter 5) offer no improvement to the prediction results. This function can help us not only prevent overfitting problem, but also improve the efficiency of the model significantly. 
	 
	Table 6.2: Performance Comparison between XGBoost Model and Gradient Boosting Model 
	Number of Trees 
	Number of Trees 
	Number of Trees 
	Number of Trees 

	MAPE XGBoost (%) 
	MAPE XGBoost (%) 

	MAPE Gradient Boosting (%) 
	MAPE Gradient Boosting (%) 

	Span

	3 
	3 
	3 

	14.64 
	14.64 

	35.10 
	35.10 

	Span

	10 
	10 
	10 

	5.22 
	5.22 

	24.33 
	24.33 

	Span

	20 
	20 
	20 

	5.22 
	5.22 

	16.78 
	16.78 

	Span

	50 
	50 
	50 

	4.87 
	4.87 

	13.56 
	13.56 

	Span

	100 
	100 
	100 

	4.82 
	4.82 

	11.11 
	11.11 

	Span

	200 
	200 
	200 

	4.74 
	4.74 

	9.38 
	9.38 

	Span

	500 
	500 
	500 

	4.72 
	4.72 

	5.67 
	5.67 

	Span

	Average computation time 
	Average computation time 
	Average computation time 

	11.8 mins 
	11.8 mins 

	Over one hour 
	Over one hour 

	Span


	 
	6.4 Summary 
	This chapter describes the numerical results of the developed XGBoost model. The relative importance of each variable in the model is presented and interpreted. In order to examine the accuracy and effectiveness of the proposed model, this chapter also evaluates the optimized modeling results of the proposed XGBoost travel time prediction 
	model and compares them with those of the gradient boosting model. The results demonstrate that the developed XGBoost travel time prediction model significantly improves the computation accuracy and efficiency. 
	  
	  
	Chapter 7.  Summary and Conclusions
	Chapter 7.  Summary and Conclusions
	 

	 
	7.1 Summary 
	Travel time is an important performance measure for assessing freeway traffic conditions and the extent of highway congestion. Anonymous vehicle probe data is a reliable source for freeway travel time analysis since it greatly improves both data coverage and data fidelity. With the development of machine learning technologies, various novel algorithms have been developed during recent years (Jordan and Mitchell, 2015). Typically, these new technologies aim to increase the accuracy and efficiency of the data
	The primary objective of this research is to develop a methodology for conducting the XGBoost model-based travel time prediction. A real-world freeway corridor is selected as the case study to examine the XGBoost prediction model so that the gaps between the theoretical research and the application of the developed model can be bridged. 
	The rest of this chapter is organized as follow: Section 7.2 presents a summary of conclusions of the numerical results derived from the proposed XGBoost travel time prediction model; Section 7.3 gives a brief discussion of the limitations of the current approaches and provides future research directions. 
	 
	7.2 Summary and Conclusions of Travel Time Prediction Results 
	Regarding the travel time prediction, it is found that the XGBoost model can provide reliable prediction results. The relationships between several important parameters in the model (e.g. number of trees, learning rate, and maximum depth of the tree) are discussed in this study. In detail, the accuracy level of a slower learning rate with a larger number of trees in the model is higher than that of a faster learning rate with a smaller number of trees. A higher max_depth value is also more efficient than a 
	The relative importance of the features shows that the travel time one step ahead (15 minutes before) contributes the most to the predicted travel time. Features such as the time of day, day of the week and weather also have higher relative importance values in the model than other features. 
	The proposed XGBoost-based travel time prediction method has considerable advantages over the gradient boosting approach. The performance evaluation result shows that the XGBoost-based model can have better outcomes in terms of both prediction accuracy and efficiency. 
	7.3 Future Work Directions 
	Typically, the XGBoost-based travel time prediction model can provide reliable results with low error rates. However, the impacts of accidents and roadworks on travel time prediction are also worth exploring. In the future, how to incorporate these features in the model will be studied if the data can be made available.  
	Furthermore, the performance of the travel time prediction model is discussed under all conditions as a whole. In the future, the performances of the model under different traffic conditions (such as both non-congested and congested conditions) can be learned and compared. 
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